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Abstract— Blind deconvolution arises naturally when dealing
with finite multipath interference on a signal. In this paper we
present a new method to protect the signals from the effects
of sparse multipath channels—we modulate/encode the signal
using random waveforms before transmission and estimate the
channel and signal from the observations, without any prior
knowledge of the channel other than that it is sparse. The
problem can be articulated as follows. The original message
x is encoded with an overdetermined m × n (m > n) matrix
A whose entries are randomly chosen; the encoded message
is given by Ax. The received signal is the convolution of the
encoded message with h, the s-sparse impulse response of the
channel. We explore three different schemes to recover the
message x and the channel h simultaneously. The first scheme
recasts the problem as a block `1 optimization program. The
second scheme imposes a rank-1 structure on the estimated
signal. The third scheme uses nuclear norm as a proxy for rank,
to recover the x and h. The simulation results are presented to
demonstrate the efficiency of the random coding and proposed
recovery schemes.

I. INTRODUCTION

The problem of deconvolution naturally arises in many
applications. Examples include channel equalization, image
restoration and seismology. The general model for the prob-
lem can be stated in the vector form as

y = f ∗ h, (1)

where y denotes the observations of the signal f , received
from a system with impulse response h. Our goal in de-
convolution is typically to solve (1) for f . If we know the
impulse response h, the linear deconvolution problem can
be reduced to a linear inverse problem. However, if we do
not know the impulse response, the deconvolution problem
becomes ill-posed, and is called blind deconvolution [1]. In
order to recover s without prior knowledge of h, we have to
use some additional assumptions on the structure of s and h.
These assumptions can be introduced in terms of statistical or
deterministic models. For example, in blind image restoration
we usually assume that images are sparse in some represen-
tation and that the blur kernel (point spread function) has
compact support [2]. Blind equalization techniques in digital
communication typically use the higher order statistics of the
observed signal [3], [4].

In this paper we demonstrate that random coding can help
us in the blind deconvolution when the unknown impulse
response of the system is sufficiently sparse. This problem
can be motivated with an example from digital communi-
cation, where channel is constantly varying and we cannot
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estimate it by sending training symbols at regular intervals.
Assume that we want to transmit a signal x ∈ Rn to
a remote receiver. The communication channel introduces
some multipath interference to the signal, where the impulse
response of channel has very few nonzero taps. In order to
protect the signal from the multipath interference, we instead
transmit a codeword f = Ax, where A is an m× n matrix
with m > n. The entries of A are typically chosen from
an i.i.d. Gaussian distribution. The received signal can be
expressed as

y = Ax ∗ h, (2)

where h denotes an s-sparse channel impulse response of
length L. Our goal is to recover the original signal x from
the received signal y, without a priori knowledge of h
(other than that it is sparse). We leverage the recent work
in compressive sensing (CS) to guide our approach for this
recovery.

Compressive sensing is generally known as a framework
of estimating sparse signals from a small number of linear
(incoherent) measurements [5], [6], [7], [8]. There is another
class of problems, closely related to compressive sensing,
where random coding is used—`1-decoding [9], [10]. In this
framework we use random coding to protect an arbitrary
signal from the “sparse additive” errors. The problem setup is
as follows. Assume that we want to transmit a signal x ∈ Rn

to the receiver, where the transmission channel can introduce
a small number of errors in the transmitted signal. In order to
introduce robustness against such errors, we instead transmit
a codeword Ax, where A is an m×n random coding matrix
with m > n. The received signal is

y = Ax+ e, (3)

where e ∈ Rm is the vector for sparse errors introduced
by the channel. If e contains s nonzero terms and m −
n = O(s log(m/s)), then solving the following optimization
program can recover x exactly (with high probability)

minimize ‖Ax− y‖1. (4)

Although the random coding part in our setup is same as
the one in `1-decoding, the signal recovery part requires a
different set of tools. The main challenge comes from the
fact that the constraints imposed by the measurements y are
bilinear (and biconvex) in x and h. Assume that we want to
solve the following optimization problem [11]

minimize
1
2
‖h ∗Ax− y‖22 + τ‖h‖1 (5)

for x and h, where the `1 norm (‖ · ‖1) imposes sparse prior
on h. The biconvexity of (5) in x and h keeps us away



from solving it simultaneously for x and h. However, we
can still utilize some powerful optimization tools to solve
this problem. One approach is to fix some estimate x in
order to solve a problem that is convex in h, and then fix
this estimate for h in order to solve a linear system to solve
for x, known as alternating minimization [11].

Another approach, and the basis for the work presented
in this paper, notes that the constraints imposed by the
measurements are linear in the elements X = xhT , i.e.
the values xihj . Indeed, there is some linear operator A for
which

A(X) = y. (6)

In the work presented here, we attempt to recover a rank-
1 matrix corresponding to our transmitted signal x and our
sparse channel h.

In this paper we present three recovery schemes. The first
scheme formulates the recovery problem as a block sparse
signal recovery problem, called block `1 scheme. The second
scheme tries to impose rank-1 constraint on the solution of
block `1. The third scheme minimizes the nuclear norm of
the matrix X = xhT corresponding to the estimates of x and
h. We also present some simulation results to demonstrate
the efficacy of random coding, and the performance of our
techniques.

II. BLOCK `1

The block `1 recovery scheme utilizes a variation on
traditional compressive sensing that deals with block sparse
signals [12], [13]. Since the nonzero elements are clustered
together, we can significantly improve the performance by
utilizing this information during the recovery process. In
block `1, we solve the following convex program:

minimize
X

‖X‖2→1 =
L∑

k=1

‖Xk‖2 subject to A(X) = y,

(7)

where Xk is the kth column of X .
We refer to ‖ · ‖2→1 as the 2→ 1 norm. Minimizing this

norm often helps to promote the column-sparsity, such that
many of the columns are identically zero. In particular, if the
matrix is rank 1 with X = fgT , then

‖X‖2→1 =
L∑

k=1

‖Xk‖2 =
L∑

k=1

|gk|‖f‖2 = ‖f‖2‖g‖1, (8)

so that the column support of X coincides with the support
of the vector g.

For our purposes, the linear operator A is defined via the
matrix A, and maps m× n matrices to vectors as follows:

y = A(X) =
L∑

k=1

SkAXk =
n∑

l=1

Al ∗ [XT ]l, (9)

where S is a shift operator and [XT ]l is the lth column of
XT (i.e. the lth row of X , transposed). In words, A sums
the convolutions of the columns of A with the corresponding
rows of X . For the sake of illustration, we often discuss

A as a matrix acting on a vectorized matrix, though we
generally do not explicitly construct this matrix in practice.
Alternatively, we may express the yk values directly as
matrix inner products (using the usual trace inner product)

yk = 〈SkÃ,XT 〉 = Tr(SkÃX), (10)

where Ã is the time-reversed form of A to facilitate convo-
lution.

Although this scheme improves the recovery performance
as compared to the standard basis pursuit (where we use `1
norm over the complete vector) [14]. However, this gives us
the desired answer only if m & sn log(nL) [15]. Whereas,
we know that the matrix X has only n+s degrees of freedom.
The reason for this “poor” performance by block `1 is that it
only attempts to minimize the number of active columns in X
(i.e., columns with nonzero norm) and does not enforce the
rank-1 constraint which is a desired attribute of our solution.
In next section we discuss an iterative method to enforce the
rank-1 constraint on the solution of block `1 method.

III. RANK-CONSTRAINED GRADIENT DESCENT

Ideally we would like to solve the following optimization
problem with block `1

minimize
L∑

k=1

‖Xk‖2

subject to y = A(X)
rank(X) = 1.

Indeed, the rank constraint would critically reduce the num-
ber of degrees of freedom from O(ns) to O(n+s), enabling
exact recovery with substantially fewer measurements. How-
ever, the rank constraint makes it a non-convex problem and
solving such a program is known to be NP-hard [16].

In this section, we discuss a first order gradient descent
method that enforces the rank-1 constraint on the block `1
solution, at every gradient step. This method seeks to traverse
the affine space defined by the measurement constraints
A(X) = y for the sparsest rank-1 matrix using simple
gradient steps.

Recall that our observations have the linear form y =
A(X). Note that the set of all X satisfying y = A(X) is
defined by the affine space H = {X0 + X̃ : X̃ ∈ Null(A)}
for some X0 satisfying A(X0) = y. As illustrated in Fig. 1,
the key idea for this approach is to start with an initial
estimate X0 and make gradient steps within the affine space
H towards our solution. A sensible initial estimate is X0 =
A†y = AT (AAT )−1y which is the minimal X (in Frobenius
norm) satisfying the constraints. At each iteration, we search
for the nearest rank-1 matrix, take a gradient step from that
matrix to minimize the 2→ 1 norm, and then project it back
to the affine subspace H .

Next, we consider how to implicitly compute the null
space projection X̃ = P (X) such that X̃ is the closest matrix
to X in Null(A). Since A†A is the projection operator
onto the Range(AT ), it follows that the projection onto the
Null(A) is P = I−P⊥ = I−A†A, orthogonal complement.



(a)

Fig. 1. An illustration of trace-constrained gradient descent. The observa-
tions y = A(X) define an affine space that the solution X must satisfy.
After choosing the initial estimate of minimal norm that lies on this affine
space, at each iteration a gradient step is made followed by a reprojection
onto this space.

A. Implicit Projection

Since the vector y is simply a sum of convolutions as
in (9), the operator A has a simple relation in the Fourier
domain. Indeed, the jth element of A(X) in the Fourier
domain is just a sum of the products of corresponding
elements of the Fourier versions of X and A:

Â(X̂)j =
∑

i

ÂijX̂ij = 〈Âj , X̂j〉,

where F is the DFT matrix such that Â = ATF is the row-
wise Fourier transform of AT and X̂ = XF is the row-wise
Fourier transform of X . Since each Fourier component of
A(X) is simply computed with an inner product involving
only that column, the projection operator P̂⊥ = Â†Â
decouples each column X̂j so that the projection can be
computed on a per-column basis in the Fourier domain. In
this way, the jth column of the projection in the Fourier
domain is given as a simple projection onto the normalized
Âj :

P̂⊥(X̂)j = Âj(Â∗j Âj)−1Â∗j X̂j =
Â∗j X̂j

‖Âj‖2
Âj

If P is not conducive to this block diagonalization, as may
be the case when A operator represents linear convolution,
it may be necessary to construct A explicitly and compute
this projection via the QR decomposition of A, generally
computationally more expensive than implicit projection, but
it will not be too prohibitive for medium scale problem.

Now with this matrix projection operator, we can easily
compute the closest matrix X̄ in the affine space A(X) = y
as A†(y −A(X)) = X0 + P (X).

B. Gradient Descent

Assume that we have an estimate X̄ on the affine space
H . Now that we are able to reproject our current estimate X̄
to PX̄ +X0 in order to meet the measurement constraints,

we discuss our gradient descent approach to find the sparsest
rank-1 matrix that meets these constraints.

Since the reprojected matrix is not necessarily rank-1, our
first step is to compute the closest rank-1 matrix σ1U1V

∗
1

from the singular value decomposition X̄ = UΣV ∗. From
this matrix, we take a gradient step to minimize ‖X‖2→1. In
general, such a gradient step involves reducing each column
proportionally to its unit vector and takes the form ∆Xk =
−α Xk

‖Xk‖ when Xk 6= 0 and 0 otherwise for some step size
α. However, in our case all vectors are scalar multiples of
U1 with X̄k = (σ1V1k)U1, so it is equivalent to reducing
their magnitudes (σ1|V1k|) uniformly, as one would do when
taking a gradient step of an `1 norm. In particular, a gradient
step of β = σ1α on each column Xk = σ1V1kU1 would
produce the following estimate X̃:

X̃k = Xk − σ1α
Xk

‖Xk‖

= (‖Xk‖ − σ1α)
Xk

‖Xk‖
= (σ1|V1k| − σ1α)U1sgn(V1k)
= σ1sgn(V1k)(|V1k| − α)U1

= σ1Ṽ1kU1. (11)

Note that because the σ1 constant is common to all columns,
it is equivalent to consider this as a uniform reduction in
|V1k|. Also, because the gradient is zero when Xk = 0, a sen-
sible implementation of this gradient descent would modify
Ṽ1k = sgn(V1k)(|V1k| − α) to Ṽ1k = sgn(V1k) max(|V1k| −
α, 0). In other words, we use soft thresholding on V1.

Combining these steps gives the following algorithm:

1) Initialize X̄ = X0, initialize α.
2) Compute the SVD X̄ = UΣV ∗.
3) Soft threshold V1 with parameter α as Ṽ1.
4) Reproject X̄ as X0 + P (σ1U1Ṽ

∗
1 ).

5) Update α to decrease geometrically.
6) Iterate through all but the first step.

The rank-1 projection step could potentially be done
directly on X or its Fourier counterpart X̂ . However, the
soft thresholding step cannot be performed in Fourier space,
so at least one FFT and one inverse FFT are necessary at
every iteration. Power methods can be used to compute V1

from X̄ and it would be computationally advantageous [17].

IV. NUCLEAR NORM MINIMIZATION

In this section, we discuss nuclear norm minimization
setting to estimate X from the measurements y = A(X).
As we discussed in sec. III, one key challenge with the
matrix formulation is that the rank constraint is difficult
to incorporate because it is not convex. It has been shown
in recent literature that the nuclear norm is the closest
convex relaxation of matrix rank and it serves as a good
proxy [18], [16]. The optimization problem for nuclear norm
minimization can be stated as

minimize ‖X‖∗ subject to A(X) = y, (12)



where ‖X‖∗ denotes the nuclear norm of X , which is defined
as the sum of all the singular values of X . The equivalent
semidefinite program can be written as

minimize
X,W1,W2

1
2

[Tr(W1) + Tr(W2)] (13)

subject to
[
W1 X
XT W2

]
� 0

A(X) = y. (14)

The results in [16] suggest that if the mapping A behaves
as a restricted isometry, then the solution to (12) is unique
and exact. In our setting, this conveniently translates to a
guaranteed recovery of x and h whenever m > O(L + n),
if our convolutive operator obeys some restricted isometry.

Note that when the solution of (12) (equivalently (13))
gives a rank-1 matrix, we can write

Z̄ =
[
W̄1 X̄
X̄T W̄2

]
=
[
x̄
h̄

] [
x̄
h̄

]T

,

and it implies that Tr(Z̄) = Tr(W1) + Tr(W2) = ‖x̄‖22 +
‖h̄‖22 is also minimal. This is the best we can do when h is
an arbitrary vector, but less than ideal in the case of sparse h,
as it does not capture our preference that h̄ should be sparse.
However, it mitigates another issue we might have had.
Namely, x and h are only determined up to a scale factor so
that αx and α−1h would also suffice. Our objective resolves
the ambiguity by choosing them on the same approximate
scale. Still, it may be preferable to impose a norm constraint
on h as

Tr(W2) = 1, (15)

to explicitly resolve the ambiguity. Now ‖h̄‖2 = 1, and
‖x̄‖2 is minimal. Since ‖h‖1 ≤

√
s‖h‖2 whenever h is s-

sparse, we may additionally place the following `1 constraint
‖h‖21 ≤ s to give preference to such solutions:

1T |W2|1 ≤ s. (16)

The semidefinite program (13) can be solved in a variety
of ways, e.g., using interior point method [19]. Although
very accurate, such second order methods are computation-
ally expensive. For large parameters, this quickly becomes
infeasible, and first order gradient descent methods may be
preferable [20].

V. SIMULATION RESULTS

To evaluate the performance of these routines and demon-
strate the efficacy of the random coding, we performed
simulations over a range of m (codeword length), n (signal
length or information), L (channel length) and s (channel
sparsity) to determine the empirical probability of success in
different regions. Figures 2 and 3 plot the phase transition
diagrams for rank-constrained gradient descent and nuclear
norm minimization respectively. The results were computed
for fixed values of m by varying the variables n, L and s
that illustrate the boundaries that separate the regions when
these approaches succeed and when they fail. We ran one
simulation per pixel and used local weighted averages (i.e.

a smoothing filter) to compute these probability estimates,
under the assumption that the underlying probability field is
continuous and relatively smooth.

The simulation results from rank-constrained gradient de-
scent for both linear and circular convolution are shown in
Fig. 2 for fixed m and L, and variable information n and
sparsity s. As shown in Fig. 2, this approach is able to
recover the original signal for sufficiently sparse channels.
Comparing the Fig. 2b to the left half of Fig. 2c shows that
shorter channel impulse response tends to outperform longer
impulse response channels for comparable information rates
and sparsity. This is somewhat intuitive because the support
of the channel is known to a much greater degree for shorter
channels. Also, the sparsity tends to play a bigger role for
larger channels and recovery is much less certain for large
channels that are not sufficiently sparse.

The simulation results for rank minimization scheme with
linear convolution model as shown in Fig. 3 for fixed
m and L, and variable information n. The results show
that nuclear norm minimization successfully recovers the
underlying rank-1 matrix for a range of values for n and
L. Figure 3b shows slight improvement in the recovery for
sparse channels, but the effect is very minor as we expect
that the nuclear norm is indifferent to the sparsity of the
matrix.

VI. CONCLUSION

We proposed a random coding scheme to protect an
arbitrary signal from the effects of a sparse channel. The
desired signal can be recovered from the received signal,
given the channel impulse response is sufficiently sparse.
The simulation results demonstrate that the redundancy in the
coding, required for exact recovery, scales with the sparsity
of the channel and length of the original signal.
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