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ABSTRACT
The generalized Minimum Mean Squared Error (GMMSE)
detector has a bit error rate performance, which is similar to
the MMSE detector. The advantage of the GMMSE detector
is, that it does not require the knowledge of the noise power.
However, the computational complexity of the GMMSE de-
tector is significantly higher than the computational com-
plexity of the MMSE detector. In this paper the idea of us-
ing the structure of the system matrix (Toeplitz) is combined
with a convex relaxation of the detection problem to reduce
the computational complexity of GMMSE detector. Further-
more, by using circular approximation of this structure an
approximate GMMSE detector is presented, whose compu-
tational complexity is only slightly higher than MMSE, i.e.
only an iterative gradient descent algorithm based on the in-
version of diagonal matrices is required additionally.

1. INTRODUCTION

The maximum likelihood (ML) detection problem can be
written as a quadratic optimization problem with integer con-
straints [1]. Unfortunately this problem is in general non-
deterministic polynomial hard (NP-hard) [2]. This obser-
vation resulted in the development of many receivers that
have reasonable complexity [3,4], e.g. the well-known least
squares (LS) and minimum mean squared error (MMSE) de-
tectors [5,6] as the most simple cases.

Recently convex programming has been successfully em-
ployed to suboptimally solve such detection problems. Us-
ing this kind of relaxation converts the discrete optimization
problem into a continuous one which can be solved itera-
tively [7]. Generalized minimum mean squared error detec-
tor is one important detector that uses convex programming
to solve the detection problem using unconstrained gradient
descent algorithm [8]. The advantages of this detector are
that it has a BER performance which is similar to the MMSE
detector, and it does not require the knowledge of the noise
power (MMSE detector needs this knowledge). Therefore, it
can be used in scenarios where the noise power is changing
rapidly or it is unknown. Associated with these advantages
of GMMSE detector there is the disadvantage, that it has a
significantly higher computational complexity compared to
MMSE detector.

In order to decrease the GMMSE computational com-
plexity the structure of the system matrix is used in this pa-
per. First the Toeplitz structure of the channel convolution
matrix is taken into consideration. In this case computing
the solution of the GMMSE detector requires the EVD of
Toeplitz matrix but it significantly reduces the effort for the
iterative gradient descent algorithm. Nevertheless, comput-

ing the EVD of the Toeplitz matrix (using e.g Lanczos al-
gorithm) is still computationally demanding. Therefore we
approximate the banded Toeplitz matrix by a circular matrix
as shown in [9]. In this case the MMSE/GMMSE solution is
obtained by computing the EVD of the circular matrix using
FFT/IFFT, such that the required EVD implies no additional
effort. Furthermore, this procedure also significantly reduces
the effort for the gradient descent algorithm since now the it-
eration steps of this algorithm are based on the diagonal ma-
trix containing the eigenvalues. Therefore, the circular ap-
proximation is advantageous for both parts of the GMMSE
solution.

This paper is organized as follows: In section 2 the sys-
tem model for the detection problem and its convex relax-
ations are introduced. LS and MMSE detectors are described
from the convex programming point of view in section 3.
GMMSE detector is described in section 4. In section 5
we introduce our new detector which is derived from the
GMMSE detector taking into account the structure of the
channel matrix which leads to a reduced computational com-
plexity. Simulation results are used to compare bit error rate
(BER) of the different detectors in section 6 and the com-
putational complexity is discussed in section 7. Conclusions
are drawn in section 8.

2. DETECTION PROBLEM AND ITS
RELAXATIONS

Consider the system model in matrix form as

r = Hx+n. (1)

The vector r ∈ Rm is the received signal vector, the matrix
H ∈ Rm×n is the convolution matrix, and the vector n ∈ Rm

is additive white Gaussian noise with noise power σ2. The
transmitted symbols x ∈ Rn are drawn from Binary Phase
Shift Keying (BPSK) constellation, i.e. x ∈ {−1,+1}n.

Under the white Gaussian noise assumption the ML de-
tector of x is given by

x̂ = arg min
x∈{−1,+1}n

‖r−Hx‖2
2 . (2)

The ML problem in (2) can be equivalently written as

x̂ = arg min
x∈{−1,+1}n

xT HT Hx−2rT Hx. (3)

Substituting the value of the matched filter output

y = HT r
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into (3), we get

x̂ = arg min
x∈{−1,+1}n

xT HT Hx−2yT x. (4)

This problem is NP hard and solving (4) by exhaustive search
has a complexity which grows with 2n [2]. This makes com-
putationally less complex solutions of (4) interesting.

We use the benefits of convex programming as an impor-
tant mathematical tool to solve problem (4) by relaxing its
constraint set. The constraint set x ∈ {−1,+1}nwhich con-
tains only the corners of the unit hypercube is not a convex
set. Therefore we relax this constraint set using two relax-
ations which yield a convex set.

The first relaxation of the constraint in (4) is the whole
space or by other words, there is no constraints and the sec-
ond relaxation is the sphere which covers this unit hypercube.
The solution in each case can be mapped to the feasible set
of the original problem by taking the sign of each component
of the relaxed solution vector.

It is worthwhile to note that the relaxation also works for
higher constellations like QPSK, 8PSK, and 16PSK. We re-
fer to these higher constellations as M-PSK. In our case we
have M = 2 as BPSK. In M-PSK constellations, problem (4)
can be written as

x̂ = arg min
x∈Sn

xT HT Hx−2yT x, (5)

where S contains the PSK constellation points.
For M-PSK modulation, the constellation points take the
form

e jαi ,αi = 2πi/M,∀i = 1, ...,M.

The discrete nature of the set αi makes problem (5) in-
tractable. As a result, we propose a continous relaxation
of the set αi to contain all possible angles in [0,2π]. In
other words, we can relax the constraint x ∈ Sn to x ∈ Un =
{x : |xi|= 1,∀i = 1, ...,n}, so problem (5) becomes

x̂ = arg min
x∈Un

xT HT Hx−2yT x. (6)

This relaxation is a quadratic optimization problem that can
easily be relaxed to a convex optimization problem [7].

3. LEAST SQUARES AND MMSE DETECTORS

We first discuss the LS and MMSE solution from the convex
programming point of view. Relaxing the constraint set to be
the whole space, problem (4) takes the form

x̂ = arg min
x∈Rn

xT HT Hx−2yT x. (7)

The following theorem stated in [7] describes LS and
MMSE solution from the convex programming point of view.

Theorem 1 Suppose that the objective function f in an un-
constrained convex optimization problem is differentiable, so
the well known necessary and sufficient optimality condition
is

∇ f = 0. (8)

Applying condition (8) to problem (7), which has an objec-
tive function

f (x) = xT HT Hx−2yT x,

the necessary and sufficient optimality condition gives the
solution

x∗ =
(
HT H

)−1 y, (9)

which is the well known least squares solution.
When the noise power σ2 is known HT H is replaced by

HT H+σ 2I, then using the same relaxation (the whole space)
we get the minimum mean square error solution

x∗ =
(
HT H+σ2I

)−1 y. (10)

4. GENERALIZED MMSE DETECTOR

If we relax the constraint set to be the sphere which contains
the unit hypercube, then our detection problem takes the form

x̂ = arg min
xT x≤n

xT HT Hx−2yT x. (11)

Since problem (11) has a convex objective function over a
convex constraint set, i.e. it is a convex optimization prob-
lem and it has a unique minimum [7]. The convex duality
theorem guarantees that no duality gap exists and one can
solve for the dual problem instead [10]. Problem (11) has a
single constraint such that there is only one dual variable and
a simple iterative algorithm can be employed to solve this
dual problem.

We can express the Lagrange dual function as

L(x,λ ) = xT HT Hx−2yT x+λ
(
xT x−n

)
, (12)

which is minimized over x and maximized over λ ≥ 0. Solv-
ing for x in terms of λ and substituting back, we obtain

max
λ≥0

−yT (HT H+λ I
)−1 y−λn. (13)

This problem has the advantage, that it is a one dimensional
optimization problem so it is easier to solve this problem in-
stead of problem (11). Problem (13) can be solved by differ-
ent iterative algorithms [11]. A simple unconstrained gradi-
ent descent algorithm given by

λ̄ (t +1) = λ̄ (t)+µ
(

yT (HT H+ λ̄ (t)I
)−2 y−n

)
, (14)

converges to λ̄ for a reasonable choice of the step size µ . The
solution of (13) is given by

λ ∗ = max(0, λ̄ ). (15)

Then, the unique minimizer of (11) is

x∗ =
(
HT H+λ ∗I

)−1 y. (16)

This solution, looks familiar because of its similarity to the
MMSE detector. When

λ ∗ = σ2,
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the GMMSE detector reduces to the MMSE detector. There-
fore this detector which depends on the value of the optimum
dual solution λ ∗ is named Generalized MMSE detector. The
advantages of the GMMSE detector are, that it improves the
BER performance ( as compared to LS ) and it does not re-
quire the knowledge of the noise power σ2. Because of these
advantages it can be used in scenarios where the noise power
is changing rapidly or it is unknown. According to the nature
of λ ∗ which is a function of y the GMMSE solution results in
a nonlinear detector in contrast to the MMSE detector. How-
ever GMMSE detector has the disadvantage that it requires a
higher computational complexity than MMSE detector.

5. STRUCTURED PROBLEM

In this section we use the GMMSE detector combined with
the circular approximation of the banded Toeplitz structure
which was presented in [9] in order to decrease the computa-
tional complexity. We achieve this aim in two steps . In the
first step the Toeplitz structure of the channel convolution
matrix H is used. In this step we express the matrix HT H of
problem (11) by its eigenvalue decomposition

HT H = VΛVT ,

where V is the matrix whose columns are the eigenvectors
of HT H and Λ is a diagonal matrix that contains the corre-
sponding eigenvalues as its diagonal elements. Problem (11)
can be rewritten as

x̂ = arg min
xT x≤n

xT (VΛVT )x−2yT x. (17)

The dual problem for the problem (17) takes the form

max
λ≥0

−yT ((VΛVT )+λ I
)−1 y−λn. (18)

The unconstrained gradient descent algorithm takes the form

λ̄ (t +1) = λ̄ (t)+µ
(

yT V
(
Λ+ λ̄ (t)I

)−2 VT y−n
)

(19)

and the GMMSE solution will be

x∗ = V(Λ+λ ∗I)−1 VT y. (20)

Besides computing VT y only diagonal matrices must be con-
verted in (19) and (20), which significantly simplifies the
computations . We can also make use of the Toeplitz struc-
ture of HT H when computing the EVD by using the Lanczos
algorithm [12]. Although this approach significantly reduces
the computational complexity of the GMMSE detector (the
iterations of (19) on the diagonal matrices are only of O(n)),
it is still much more complex than MMSE because of the re-
quired EVD.

In the following we use an approximation of the Toeplitz
case to further reduce the computational complexity. A
banded Toeplitz structured convolution matrix H is approxi-
mated to a circular matrix HT by adding L−1 columns to the
Toeplitz matrix, where L is the length of the channel impulse
response. This is shown in the following example for L = 2:

H =

[
h1 0
h2 h1
0 h2

]
→

[
h1 0 h2
h2 h1 0
0 h2 h1

]
= H̃.

If the channel matrix H in problem (11) is approximated by
the circular matrix H̃ we obtain

x̂ = arg min
xT x≤n

xT H̃T H̃x−2yT x. (21)

We can express the matrix H̃T H̃ by its eigenvalue decompo-
sition

H̃T H̃ = FT ΛF,

where F is the discrete Fourier transform matrix (computed
by FFT) and

Λ = diag
(
F · H̃(:,1)

)
.

In that case problem (11) can be written as

x̂ = arg min
xT x≤n

xT (FT ΛF
)

x−2yT x. (22)

The dual problem for problem (22) is

max
λ≥0

−yT ((FT ΛF
)
+λ I

)−1 y−λn (23)

and the gradient descent algorithm in the circular case takes
the form

λ̄ (t +1) = λ̄ (t)+µ
(

yT FT (Λ+ λ̄ (t)I
)−2 Fy−n

)
. (24)

After getting the optimal value λ ∗, the GMMSE solution in
the circular case is

x∗ = FT (Λ+λ ∗I)−1 Fy. (25)

Again, besides computing Fy (IFFT) only diagonal matrices
must be inverted in (24) and (25). Most important, no EVD
computation is required in the circular case, since the EVD of
a circular matrix is easily obtained using FFT/IFFT. There-
fore, in this case the additional effort (compared to MMSE)
given by the iteration of (24) is moderate, i.e. inversions of
diagonal matrices and scalar products.

6. SIMULATION RESULTS

The BER performance of the different detectors is discussed
for BPSK modulation. In the simulation we compare the
BER performance for LS, MMSE, and GMMSE detectors,
taking into account that we have two different structures,
Toeplitz and circular approximation. We applied this sim-
ulation for four different simulation scenarios:
• L = 5, n = 100
• L = 5, n = 1000
• L = 15, n = 100
• L = 15, n = 1000

The first two scenarios are shown in figure (1) and the last
two scenarios are shown in figure (2).

Figures (1) and (2) show that GMMSE detector has al-
most the same performance as MMSE detector but it has
the advantage that it does not require the knowledge of σ2.
Furthermore, we see that the circular approximation only
slightly degrades the performance of the detectors.
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Figure 1: Performance analysis for Structured LS, MMSE,
and GMMSE detectors with channel length L = 5, (a) n =
100, (b) n = 1000 ( t: Toeplitz case; c: circular case)

7. COMPUTATIONAL COMPLEXITY

The computational complexity of the GMMSE detector is
composed of two parts:
Part 1 The complexity of the solution of the system of equa-

tions ((16), (20) or (25)) which is the same as for LS and
MMSE ((9) or (10)).

Part 2 The complexity of the iterations required for the gra-
dient descent algorithm ((14), (19) or (24)).
In part 1, if there is no structure the solution is obtained

by the Cholesky algorithm with complexity n3/3. When
there is a Toeplitz structure, the solution is given by the
Levinson algorithm with complexity 4n2 and if we approx-
imate this Toeplitz matrix to a circular structure, the solu-
tion is obtained using the FFT decomposition with complex-
ity 3/2(n+L− 1) log2(n+L− 1)+ (n+L− 1). Therefore,
the circular approximation results in a significantly reduced
computational complexity.

In part 2 gradient descent algorithm adds some complex-
ity. However, for the structured cases ((19) or (24)) the it-
erations of the gradient descent algorithm are only applied
to diagonal matrices (Λ) such that the complexity is only of
O(n) per iteration. Figure (3) shows the mean number of
required iterations for the Toeplitz case and circular case in
our first two scenarios when the channel length is L = 5 and
figure (4) shows it in our last two scenarios when the chan-
nel length is L = 15. Since the required number of iterations
is quite small and the computational complexity is only of
O(n) per iteration, the complexity of the gradient descent al-
gorithm is almost negligible compared to part(1).
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Figure 2: Performance analysis for Structured LS, MMSE,
and GMMSE detectors with channel length L = 15, (a) n =
100, (b) n = 1000 ( t: Toeplitz case; c: circular case)

GMMSE complexity

System variables No structure Toeplitz Circular

n = 100; L = 5 3.3∗105 0.4∗105 1149

n = 1000; L = 5 3.3∗108 0.04∗108 11413

n = 100; L = 15 3.3∗105 0.4∗105 1282

n = 1000; L = 15 3.3∗108 0.04∗108 16194

Table 1: Computational complexity for GMMSE detector

The overall complexity (part(1) and part(2)) for all scenarios
are shown in table (1).

8. CONCLUSIONS

In this paper, it was shown that the circular approximation
of the Toeplitz channel matrix is not only effective to signifi-
cantly reduce the computational complexity of GMMSE de-
tector using the gradient descent algorithm, but it also keeps
the performance gain compared to LS detector (is almost the
same as MMSE) without any requirement to know the noise
power value (σ2) .
In future work we will apply the presented technique to vari-
ous practical problems and evaluate the performance depend-
ing on the channel length (L) and the dimension of the trans-
mitted bit vector (n). We will also apply it to some common
communication schemes like CDMA and OFDM.
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Figure 3: Iterations for gradient descent algorithm in Toeplitz
and circular structure cases with channel length L = 5, (a)
n = 100 and (b) n = 1000.
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Figure 4: Iterations for gradient descent algorithm in Toeplitz
and circular structure cases with channel length L = 15, (a)
n = 100, and (b) n = 1000.
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