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Design of Orthogonal Pulse Shapes for
Communications via Semidefinite Programming

Timothy N. Davidson Member, IEEE Zhi-Quan (Tom) Luo Member, IEEE and
Kon Max Wong Senior Member, IEEE

Abstract—n digital communications, orthogonal pulse shapes efficient solutions [5]-[7], the orthogonal multirate FIR filter
are often used to represent message symbols for transmissiondesign problem has a translation orthogonality constraint [3],

through a channel. In this paper, the design of such pulse shapes s[4 \hich is not convex. Such nonconvexity can lead to the
formulated as a convex semidefinite programming problem, from tandard bl fl [ mini in the desi
which a globally optimal pulse shape can be efficiently found. The standard problems ot focal minima in the design process.

formulation is used to design filters that achieve Fortunately, many of the desirable properties of an orthog-
a) the minimal bandwidth for a given filter length; onal waveform are actually properties of the autocorrelation
b) the minimal filter length for a given bandwidth; of the waveform. By reformulating the design problem in

¢) the maximal robustness to timing error for a given bandwidth  terms of the autocorrelation sequence of the “pulse-shaping”
and filter length. filter, the translation orthogonality constraints become linear

Bandwidth is measured either in spectral energy concentration :
terms or with respect to a spectral mask. The effectiveness of the and, hence, convex. Once the autocorrelation sequence has

method is demonstrated by the design of waveforms with substan- P€€n designed, the transmission and reception filters can be
tially improved performance over the “chip” waveforms specified ~extracted (nonuniquely) by spectral factorization. In this way,
in recent standards for digital mobile telecommunications. many pulse-shaping filter design problems can be formulated
Index Terms—Code division multiaccess, multirate FIR digital ~as linearly constrained convex minimization problems [8]-[13].
filters, optimization methods, pulse amplitude modulation, signal Unfortunately, an infinite set of linear constraints is required to
design. ensure that the designed autocorrelation has a spectral factor,
and such sets can be rather awkward to deal with in practice [8],
I. INTRODUCTION [14]. In this paper, we employ a state space parameterization of

] o the autocorrelation sequence and use the positive-real lemma
O NE OF THE fundamental operations in digital commury 5; ¢ transform the semi-infinite linear constraint into a finite

nications is the representation of a message symbol by giuar matrix inequality. The transformed (autocorrelation
analog waveform for transmission through a channel (Wavefo%sign) problem is a convex semidefinite program (SDP) [16]
coding) [1], [2]. The choice of such waveforms critically affectgyose globally optimal solution can be found in an efficient
the performance of a communications scheme and usugiinner using interior point methods [17]. Furthermore, the
involves a compromise between system capacity, robustnessifimum-phase spectral factor can be extracted directly from
expected channel imperfections and interference, system dejg¥ output of the optimization routine by using a result of
and transmitter and receiver complexity. The most commoyyersonet al. [18]. This renders the auxiliary spectral fac-
waveform coding techniques involve linear pulse amplitudg;ation step unnecessary. We point out that the positive-real
modulation of a self-orthogonal (*root Nyquist’) waveforMieyma has been briefly proposed for the transformation of
or an approximation thereof. In conventional communicatiofy, entional single-rate FIR filter design problems from
systems, the available analog waveform coding technolog¥mi.infinite convex programs [19] to SDP's [20] without
has tended to restrict orthogonal waveform design to a choigR girect extraction of the minimum-phase spectral factor.
among a small set of waveforms. However, the increasifgs 5150 point out that the autocorrelation sequences that we
deployment of baseband digital signal processors has extenggdiy, tal into a subclass of linear-phase Nyquist filters. The
the class of waveforms that can be easily implemented. In Suci&ign of a general Nyquist filter does not require the “spectral
situation, the design of the waveform can be transformed 0 f)gqrizability” constraint and, therefore, tends to be simpler
design of an orthogonal multlratg dlscrete-nme f|n|Fe |mpulsr§1]_[27] (especially in the linear phase case), but the resulting
response (FIR) filter [3], [4]. Unlike conventional single-ratgangmission and reception filters may have different spectra.
FIR fllt'er.de§|gn objectives, yvhlch can often be formulated We will show that many important pulse-shaping filter design
as optimization problems with analytic or computationallyspiems can be cast as a sequence of semidefinite feasibility
problems and, hence, can be solved efficiently. The problems
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y’“-"” ) and the matched filter i§>, g[—k]¢,(KT/N — t) ~ p(—t).
b sc(t) [ Chammel ,L Matched dp Here o .
1 Modutator ee(t) If("_“’,‘) "— 4 ¢s(t)  smoothing filter in the digital-to-analog converter
(DAC);
N oversampling rate;

Fig. 1. Model of a baseband digital communication scheme.
¢-(—t) “anti-aliasing” filter at the receiver.

ERI that implementation, we can form an equivalent dis-

8\wte-time model in whichs[k] = 3" dn]glk — Nn]

S deemed to be the transmitted signal, and] =

Here, bandwidth is measured either in spectral energy conc
tration terms or with respect to a spectral mask. We also sh
that simple modifications to the design framework allow con
pensation for nonideal characteristics of the analog smoothi g’(_t)_ * Ce(t) * ¢s(t))]e=r/v, Where x denotes convo-
filter at the transmitter and antialiasing filter at the receiver. T gton, 1s the discrete-time equivalent channel, which can be
applicability of our techniques are demonstrated in several é/y([nten as
amples in which we design “chip” waveforms with superior per-
formance to those specified in recent standards for code division '
multiple access (CDMA)-based mobile telephony [28], [29]. c[k] = / ce(T)rp,0, (T — KL/N) dr 3)

In related work, the problem of maximizing the percentage

of signal energy in a given bandwidth, subject to the OrthOWherer@m(T) = [ $s(Npr(X+7) dA. The received version
onality constraints, has previously been posed as a nonconygxy| is 3[k| = S clk — m]s[m] + n[k], wheren[k] =
constrained optimization problem [3], [4]. In this paper, howy ,, (#)s, (t — kT/N) dt. The data estimates are then given by
ever, we show that it can also be formulated as a convex Séﬁl] =3, gk — Nn]3[k], which can be written as
and, hence, efficiently solved. An alternative semi-infinite linear
programming (SILP) formulation can be extracted from [13].
(The design of a more general Nyquist filter with this objective ] — _
results in an eigenvalue problem [21], [23], [25].) When the en- i) Z ersln = aldla] +naln} )
ergy bandwidth criterion is replaced by certain spectral mask
measures of bandwidth, pulse-shaping filters can be found waerecisi[g] = >, c[i]r,[t — N¢] is the equivalent channel
SILP [8] via modified Remez algorithms [9], [12] or via an SDRyom an inter-symbol interference (ISI) perspectivgjm] 2
(see Problem 4 in Section IV-B), with the finite nature of th&~ 151k 1 ] is the autocorrelation sequence of the filter
“spectral factorizability” constraint being an advantage of thﬁk]’ andng[n] = 3, o[k — Nnln[k] is the effect of the noise
SDP. on d[n].
A common design goal is to find a wavefop) that min-
Il. BASEBAND PULSE AMPLITUDE MODULATION imiz_es the spectral oc_cupation of Fhe communication scheme
subject to the constraint that the filters are self-orthogonal at
Consider the standard model for a baseband digital commuginslations of integer multiples @f. The orthogonality con-
cation scheme in Fig. 1. For notational convenience, we considgfaint ensures that there is no ISl in a distortionless channel and
only real-valued systems, but the methods can be extendedra the receiver filter neither amplifies nor correlates the white
the complex-valued case in a straightforward manner. We allgigise component of the external interference. If the channel is
(finitely) noncausal filters in our model with the understandingistortionless, then[k] = r4_,_(k7/N). Therefore, by exam-
that an appropriate delay will be required for implementatiofhing (4), for the DSP-based scheme in Fig. 2, a) there is no ISl in
The data are waveform coded by pulse amplitude modulatigriistortionless channel}, 74,4, (¢T/N)rylg—Nn] = 6[n],
(PAM) as wheres[n] denotes the Kronecker delta, and b) there is no ampli-
fication nor correlation of the white noise componenggft) if
s0(t) = Z d[n]p(t — nT) (1) >, 7¢.4.(aT/N)rglg — Nn] = 6[n]. In applications in which
n bothry, 4. (¢T/N) andry, 4. (¢T/N) are sufficiently close to

. . L . 6[q], the orthogonality constraint can be imposed directly on the
and are transmitted through a linear time-invariant (LTI) basﬁrter [see (5a) and (9a)]

band equivalent channel(¢) with additive noise and interfer-
ence modeled by.(t). The received signal is passed through t

q

The spectral occupation of a communication scheme is usu-

N e : ly measured in terms of its (time-averaged) power spectrum.
matched" filterp(—¢) and is synchronously sampled toformth%m the simple case of stationary white data with zero mean

data estimatel[n]. Such a scheme can be conveniently impleg g variancevy, the power spectrum of.() is S, (F) =
mented using digital signal processors (DSP’s) at the transmit% 5/T)|P(F)|2 ': (va/T)|® (F)|2|G(ej(2:7rFT/N)SQC where
and receiver, as shown in Fig. 2, where the filfgs] has a finite (F), ®,(F), and G(e>~f) are the Fourier transforms of

impulse response (FIR) of length p(t), ¢.(t), and g[k], respectively, and we have uséd to
denote frequency in a continuous-time setting. One commonly
L1 used measure of the spectral occupation of a communication
p(t) = Z g[k|¢s(t — KT/N) (2) scheme is tha00v% energy bandwidtlof s.(t) denotedB.
o [3], [4], [13], [21]. It is defined to be the smallegt such that




DAVIDSON et al: DESIGN OF ORTHOGONAL PULSE SHAPES FOR COMMUNICATIONS 1435

E 1=kT /N i
i | DAC and i-ali :
2 @V slk] S[k]; Sn;o?;;?er sl Clc’f"(:;el ® A;;:ti:lwfjs — 1}‘—--—.—— M 8-k W) v

Fig. 2. Multirate digital signal processing implementation of the scheme in Fig. 1.

ff“ Ss (F)dF 2 v 7 S, (F)dF. If |®,(F)| is sufficiently can be found by spectral factorization. (An informative review

close to the ideal filter of bandwidtl/(2T), then of spectral factorization techniques appears in [19].) Further-
s 4.N/T /' more, duality results can be exploited to provide a “certificate”

Jo o Ss.(F)YdF [T |G| df (i.e., verification) of infeasibility when there is no feasible so-

fooo S (F)dl - f01/2 |G(ei2w1)|2 df lution. Unfortunately, the non-negativity constraint in (6) is a

semi-infinite constraint in that it must be satisfied for all values
and henceB. ., ~ B,N/T, whereB, is the100y% energy of f € [0,1/2]. Although that constraint can be handled using
bandwidth of g[n], which is defined to be the smallegt discretization techniques [14], such an approach may lead to
such thatff |G(e2™ D)2 df > ~ fol/2 |G(e72=F)|2df. The overly conservative designs and can be rather awkward numer-
term |G(e??7/)|? is known as thepower spectrunof g[k]. ically in our application [8].

For convenience, we will often normalize the filter energy so We now apply the Positive-Real Lemma to transform
that Zf;é glk]? = 21'01/2|G(6j27rf)|2 df = 1. Finally, we the semi-infinite constraint in (6) into a finite-dimensional
observe that the Fourier transform of the autocorrelatigm] constraint with some auxiliary variables and, hence, avoid

satisfiesR, (¢/>™/) = r,[0] + QETLn—:ll rq[m] cos(2rmf) = the above-mentioned difficulties. The lemma will employ the
|G(e727 1) 2. well-known concepts of controllability and detectability of a
state space realization [32], [33].
. A FEASIBILITY PROBLEM Lemma 1 (Positive-Real Lemmalet H(z) be a (stable) real

rational function with its poles (if any) inside the unit circle.

In this section, we introduce the fundamentals of our desi%qJploose that (so) is finite and thatH (=) admits a control-
framework by studying various formulations of the following,p|e and detectable state-space realizalign) = d + (I —

simple feasibility problem for the filtey[4] in Fig. 2:For a given A) b, with d > 0. Then,H (/2™ + H(e 427/} > 0 for all
v, B, N, and L, either find an orthogonal filtep[k] of length at f € Rifand onE/ if there exists a real symmetric matBxsuch
mostL with a100v% energy bandwidth less than or equallfo 4,
or show that none exists we formulate this problem directly in
terms of the filter coefficients, the orthogonality and bandwidth
constraints are

iy P-ATPA I —ATPb

MP)= | (e~ ATPb)” 2d—b7Pp | 20 D

L—-1 . . . . .
B B This lemma appears in a variety of forms in the literature (see

ng[k]g[k — N =44, £=0,1,...,[(L-1)/N] [15], [18], [32], [34], and references therein). The present form

=N (53) (based on [34]) is chosen because it requires only detectability

B (rather than observability) of the realization Hf(z) and be-
/ | (>N 2 df >v/2 (5b) cause the symmetric matri® is unconstrained. This allows
0

us to avoid redundant constraints in Formulation 1. Using the

respectively, whergz | denotes the greatest integer. Unfor- ~Stability” of H(z) and a result of Lyapunov [33], it can be

tunately, both these constraints are nonconvex in the pararoWn that all symmetric matricd satisfying (7) are positive

ters g[k]. As a result, determining an answer to the feasibiligeMidefinite: a result thﬁtl""i” be exploited in Lemma 2.

problem may be complicated by the presence of local minima, SiNCeL,(2) = 1 +Z’l’1:1 rg[m](z" +27"), the realization
particularly when we wish to determine that no solutions exis@’(z) = d+ c(zI - A)7"b with

However, using relationships from Section I, we can param- 01 0

eterize the problem in terms of the autocorrelatigfm], re- A= {0 LOQ} , b= {1} (8a)

sulting in the linear constraints in (9a) and (9b) and the addi- : N

tional linear inequality constraint c=[rg[L —1] T4, d=1/2 (8b)
Ry (/™) >0, forall fe[0,1/2]. (6) andry = [rg[L—2],74[L—3],...,7,[1]] satisfies the conditions

of Lemma 1. (Ifr4[L — 1] # 0, the realization is observable.)
This additional constraint is a necessary and sufficient conditi@fsing this realization, the feasibility problem can be cast as the
for r,[m] to be factorizable (by the Féjer—Riesz theorem [30Jjollowing formulation.
The linearity of these constraints ensures that the (autocorreFormulation 1: Given v, B, N, and L, either find
lation) design problem is a linearly-constrained convex feasiz[m],m = 0,1,...L — 1, andP = P = [1;%1 E;j] with
bility problem. Once a feasible autocorrelation has been foupd, being a scalar such that "
(via any of the standard linear programming techniques [31], in-
cluding those based on interior point methods), a feasible filter ~ »,[¢N] = 6[¢], for¢{=0,1,...,|(L—-1)/N] (9a)
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I—1 . . —
1 ] where A andb were given in (8)d, = /1 — p2s, andc, =
- 3 ry[m]sin(2rmB)/m > v/2 — B (9b) [rg[L —1] %, — p%]/d,. Hence
[Pn P12} B {0 0 } rglL —1] VN’1—1721217 k=0
pls P22 0 Py| tf—pi2|>0 (%) glk]= [Pg—f’m]L_l_k/ VI-p2, k=1,2,.. L-2
Tg[L_]‘] f‘g_p:fQ 1—pa 7’g[L—1]/\/1—]322, k=L-1
. (10)
or show that none exist. where[v]; denotes théth element of a vectov. We point out

Formulation 1 consists of linear constraints [(9a) and (9bjhat if r,[m] is fixed, then Formulation 2 provides a convex op-
and a linear matrix inequality (LMI) constraint (9c). Hence, itimization method for spectral factorization.
is a semidefinite feasibility problem [16] and can be solved in a
highly efficient manner using interior point methods [17]. (Sev- IV. SOME DESIGN PROBLEMS
eral generic SDP solvers are available, including theMB - ) _ . .
basedSeDuMi package [35].) Semidefinite programming tech- In this section, we adapt the framework estgblls_hed in Sec-
niques have been applied to efficiently solve a number of othign il to the solution of a number of pulse shaping filter design

engineering problems, including many in control [36], [37] anaro.bler_ns. We first d.iscuss problems in which the spectral occu-
pationis measured in terms of the percentage energy bandwidth.

a few in signal processing [20], [38], [39]. We point out tha! ; | - '
in Formulation 1, the orthogonality constraint (5a) is enforced Section IV-B, we will use alternative measures of bandwidth

precisely by (9a) and that both the bandwidth constraint (5B§S€d on spectral masks, and in Section IV-C, we show how the
and the non-negativity constraint (6) are enforced precisely [5 aracterlstlc_s of the smt_)othlng and antialiasing filters can be
(9b) and (9c), respectively], without discretization in frequenclficorPorated into the designs.

In contrast, enforcing a simple sampled version of the non- )

negativity constraint (6) in a linear programming formulatiod™ USing the Percentage Energy Bandwidth

involves a compromise between the number of discretizationA natural extension to the feasibility problem studied in the
pointsNy (i.e., the number of constraints) and the conservativigrevious section is to search for an orthogonal filter that pro-

factor ey, which is chosen such tha, (e/27/(?Na)) > ¢ . vides the smallest00y% energy bandwidth for a given length

i = 0,1,...,N; — 1 guarantees thak,(¢’2"/) > 0 for all L and fractiony. This problem can be phrased as follows.
£ €10,1/2]. (A “rule of thumb” is to chooseV, =~ 15L, [19].) Problem 1: For a given¥, L, and~y, find a filter achieving
The concession for the precision of Formulation 1 is the LMhin B over variables-,[m], m = 0,1,...,L — 1, P = PT,

and the additionalL — 1)(L — 2)/2 variables in the symmetric and B subject to the constraints in (9).
half of P. Although the resulting SDP may require a greater For a fixed value ofB, Problem 1 is the semidefinite feasi-
computational effort than a (conservative) sampled linear proHity problem in Formulation 1. Furthermore, it can be shown
gram with a moderate value d@f,, the total solution time in that (for0 < v < 1), Formulation 1 will yield a positive result
solving the SDP is still quite acceptable (e.g., a couple of mifer B > B* and a negative result f{d8 < B*, whereB™ is the
utes on a standard personal computer). solution to Problem 1. Therefor8* and the optimal autocorre-
By solving Formulation 1, we obtain a feasible autocorreldation+}[m] can be found using a bisection searchfayrstarting
tion or a certificate of infeasibility when there is no feasible awwith lower and upper values of zero and one half, respectively.
tocorrelation. In the feasible case, a feasible filter could then Ba optimal filter could then be found by any spectral factoriza-
found by spectral factorization (using any of the methods suien technique, including solving Formulation 2 givéh= B*
veyed in [19]). An advantage of Formulation 1 is that it can bandry[m] = r;[m], and then applying (10). As an alternative,
simply modified to produce the minimum-phase [18] spectrale could replace Formulation 1 by Formulation 2 at each stage
factor directly, without the need for auxiliary spectral factorizasf the bisection search so that (10) is immediately applicable,
tion, using the following lemma (collected from results in [18])and an optimal filter is obtained directly. A property of many
Lemma 2: Assume the same setting as Lemma 1 and thaterior point methods for the solution of Formulations 1 and 2
M(P) > 0for some positive semidefinite matd. Then, there is that they require about the same computational effort. There-
exists a minimal solutiod® to M(P) > 0, i.e.,vP = P? such fore, this alternative method remains efficient. We will refer to
thatM(P) > 0, P > P. Letd, = v2d—bTPb, and let both these solution methodssemidefinite programming based
cw = (' —ATPb)/d,. ThenW (z) = d,, +¢c,(x2I—A)~'b bisection search (SDP-B&)ethods. We demonstrate the appli-
is the minimum phase spectral factor (up to a sign ambiguitgation of Problem 1 in the following example.

of H(z) + H(=™1). Example 1:In this example, we design orthogonal filters
We can obtaiP by replacing Formulation 1 by the following to compete with a sampled and truncated implementation of
semidefinite program. the filter with a square-root cosine roll-off frequency response

Formulation 2: Given~, B, N, and L, either findr,[m], [40]. The roll-off factor was chosen to be = 0.22. (The
m=0,1,...L—1,andP = P7 partitioned as in Formulation same choice of filter was made for the “chip waveform” in the
1 achievingnin trac&P) subject to (9), or show that none existUMTS proposal [29].) We choos& = 4 andL = 49 so

Once Formulation 2 has been solved, a feasible filtefcan that the truncated root cosine roll-off filter remains approxi-
be found by direct substitution into Lemma 2, without auxiliarynately orthogonal. That filter has a 99% energy bandwidth of
spectral factorization. In that cas&(z) = d,+c,(:I—-A)~'b, Bggg ~ 0.1351. (Due to a fortuitous combination of sampling
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(a) Min. Bg.gg given L = 49.
Fig. 3. Minimal achievable 99% energy bandwid8i 45 for an orthogonal
filter of length L marked withx's (calculated in Example 1). The circle denotes T T
the position of the (almost orthogonal) truncated root cosine roll-off filter with 0
a = 0.22 andL = 49.

and truncation effects, this is a particularly good choice in the
sense that this filter has better spectral decay than those of lengtt :’ =r
L = 48, 50, and51.) By solving Problem 1 for the same values §
of N and~ and usingseDulMi [35] to solve the SDP’s, the min- N
imum achievable3, o9 With an orthogonal filter of lengtth can E_;T
be determined. The resulting relationship is shown in Fig. 3. ~“or
(The “ragged” but nonincreasing nature of this relationship is
due to the orthogonality constraint and is not due to numerical =%}

|
'
: ottt .
|
]
5

error. In particular, the orthogonality constraint (9a) effectively P

removes the extra degree of freedom in filters of lerfgtN + 1, ot o o5 oz o 61 ok o1 & o
for K € Z, over those of lengttik V' by constraining it to be [ cycles-per-sample

zero.) ForL, = 49, the minimum achievabl&g o9 is ~ 0.1291, (b) Min. L given B gg = 0.1351.

which is a reduction of more than 4% over that of the truncated

root cosine roll-off filter of the same length. The power spectra

of these two length 49 filters are plotted in Fig. 4(a). Observe, °
however, that the reduced 99% energy bandwidth has come at
the expense of higher “sidelobes.” We will address this issue in
Section IV-B. In theL = 49 case, the feasibility problem at
each stage of the bisection search was evaluated in under 2 mir
and 45 s on a 400-MHzeRTIUM Il workstation. O

Of course, a minimal00+v% energy bandwidth may not be
the primary design criterion for a pulse shaping filter. For in-
stance, we may wish to design an orthogonal filter that mini-
mizes the delay in the received data that is required to ensure
that the receiver filter is causal, subject to a constraint on the
energy bandwidth. . . . .

Problem 2: For a giveny, N, and B, find a filter achieving o065 01 o oz 02 03 0% o4 0& 08
min I over variables-,[m], m = 0,1,...,L — 1, P = P”, f, cycles-per-sample
andL € Z subject to the constraints in (9). (c) Max. v given By = 0.1351 and L = 49.

Problem 2 can also be be solved by an SDP-BS method, but
we must first obtain a feasibl&. An iterative doubling tech- Fig. 4. Relative power spectra (in decibels) of the designed filters (solid) and

. . . . . the root cosine roll-off filter (dashed) in Examples 1-3 [(a)—(c), respectively].
nique will always produce a feasiblke if one exists, but that
search can often be reduced by using the designer's insight.

Example 2: By solving Problem 2, the smallestsuch that tion of the bisection search was evaluated in 11 s on a 400-MHz
there is an orthogonal filter with the sani& o9 as the trun- PENTIUM Il workstation.) The power spectrum of the designed
cated root cosine roll-off filter of length 49 in Example 1 wadilter is plotted in Fig. 4(b). Note that as in Example 1 the de-
found to be 31. This represents a substantial reduction in dekagned filter has higher sidelobes than the root cosine roll-off
and computational requirements. (The problem at the last itefidter. O
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In Problems 1 and 2, we minimizeld and L, respectively. spectral occupation would be to constrain the power spectrum
The obvious remaining problem is to maximizesuch that to lie within a given spectral mask, i.e.,
B, < B.(Inthe absence of the orthogonality constraint, the so-
lution is a discrete-time prolate spheroidal function [41].) This Az,(f) < R,(¢'**) < M,(f), forall f€[0,1/2] (12)
problem is important when the channel bandwidth is (physi-
cally) constrained taB, and we wish to obtain the maximalfor some given maskZ,( f) and M, (f). The mask constraints
spectral energy concentrationih This problem has previously are linear in-,[m], and hence, the convexity of the previous fea-
been formulated as a nonconvex optimization aM&t [3], [4],  sibility problems is maintained. (The mask constraintsre
but it can also be formulated as the following (convex) SDP. convex ing[k] unless the filter is constrained to have linear phase
Problem 3: For a givenV, L, and B, find a filter achieving [19], [20]. It has been known for some time that a phase lin-
max -y over variables [m],m = 0,1,...,L—1,P =P" and earity constraint can lead to increased spectral occupation [4].)
7 subject to the constraints in (9). The mask constraint is a semi-infinite constraint, but it is less
Problem 3 is a semidefinitgptimizationproblem ¢ is a con-  “critical” than that in (6) in that if (12) is violated and (6) is not,
cave function of the parameters), and an optimal autocorrelatigien a filterg[k] with autocorrelation-,[m] does exist; it just
can be efficiently found from a single SDP (as distinct from thgiils to satisfy the mask. In practice, the mask constraint can be
sequence of SDP’s for the previous problems). An optimal filtggonservatively) enforced using discretization techniques [14],
can then be extracted by spectral factorization. That results[i®], [20]. In many applications, filter masks are specified in
atwo-stagemethod. Independently, but concurrently, with ouferms of the relative magnitude of the power spectrum at dif-
work, Tugan and Vaidyanathan [42] showed that the designfefent frequencies, usually on a logarithmic (decibel) scale. If
optimal orthogonal energy compaction filters for signal comye |et pe(f) and p,(f) denote the lower and upper relative
pression applications can also be formulated as Problem 3. (efver spectrum bounds ayfk], in decibels, them/,(f) =
corresponding semi-infinite linear programming formulation (@101%()“)/107 for some¢ > 0, and similarly ford,,(f).
the design of optimal orthogonal energy compaction filters ap-|n Section 111, we formulated the design of an orthogonal filter
peared in [43].) In addition, they suggest replacing the objecti¥ga given length that has a certain percentage energy bandwidth
in Problem 3 by as a semidefinite feasibility problem. The equivalent problem
with a spectral mask bandwidth can also be formulated as a
max y — AtraceP) (11)  semidefinite feasibility problem.

. ) i o Problem 4: Givenp,(f), p.(f), N, andL, either findr,[m],
for some constamk > 0 in order to find an optimal filterina ,, _ 41 1 1 p—PT and¢ > 0such that (9a) and (9¢)

single-stagenethod. It can be shown that the solutiBrof (11) 56 satisfied and thator«()/10 < R (3271 < ¢10Pa(D/10
is indeed the minimaP so that (10) can be directly applied.y, g £ €1[0,1/2], or show thatﬁon(ge exist.
Unfortunately, for any positive, (11) is not equivalent to the  p.ohjem 4 can be used as the subproblem in an SDP-BS

objective in Problem 3. Although a continuity argument SUgsethad to find a minimal length filter for a given spectral mask,
gests that the the optimal solution sets for the two problems &J€,\.e demonstrate in the following example.

close for sufficiently smalk, the choice of\ appears to be rather Example 4: In this example, we design a filter to compete

ad hoc (The choice\ = 10~ is suggested in the examples iy, the filter specified for the synthesis of the chip waveform in
[42].) If an appropriate value fok is difficult to determine, the e |S95 standard [28]. Assuming an ideal smoothing filter, the
two-stage method may be more appropriate. standard requires a filter with-a1.5-dB ripple in the passband

. Example 3: By sqlving Problem 3 wittB = 0.1351, wecan r o [0, £,] and 40-dB attenuation in the stopbafié [£,,1/2],
find an orthogonal filter of length 49 that has the maximal SPe{yhere f, = 590/(1228.8N), andf, = 740/(1228.8N). The
= . , . = . .

tral energy concentration within the 99% energy bandwidth @fiar chosen in the standard has linear pha¥e,= 4, and

the truncated root cosine roll-off filter from Example 1. Thatop; _ 45 and hencef, ~ 0.12, andf, ~ 0 15’ Wh’ereas

! . | no : = 48, » &~ 0.12, s ~ 0.15.

timal filter has 99.76% of its energy within that bandwidth. (Thg, ¢ fiiter satisfies the spectral mask, it does not satisfy the or-

solution was obtained in under 3 min and 19 s on a 400-MKg,nality constraints (see Fig. 9 in Example 6). Hence, the
PENTIUM Il workstation.) The power spectrum of the designefkgg fijter can induce substantial “interchip” interference even
filter is plotted in Fig. 4(c) from_wh|ch |_t is clee_lr thatincrease iNvhen the physical channel is benign. Therefore, we seek a min-
v has been achieved at the price of higher sidelobes. (Note thak |ength filter such thatoththe (relative) frequency response
the sidelobes of the designed filter in Fig. 4(c) are more than,3,y is satisfiedndthe filter is orthogonal. A globally optimal
dB below those in Fig. 4(a).) solution to this problem was found using an SDP-BS method
) ) based on Problem 4. The last SDP in the search was solved
B. Using Spectral Mask-Based Measures of Bandwidth (usingSeDuMi [35]) in just under 7 min and 20 s on a 400-MHz
By choosing the energy bandwidth as our design criterioBENTIUM |l workstation. The increase in computational time
we lose control over the actual spectrum of the pulse shapeer that in Examples 1-3 is due to the nature of the bandwidth
as is apparent from the high sidelobes in the designed filtersdanstraint. The energy bandwidth constraintis a single linear in-
Fig. 4. This may require excessive guard bands between (unequality in Examples 1-3, whereas the spectral mask constraint
ordinated) adjacent channels. In addition, many communicatiorthis example is enforced by around 950 linear inequality con-
standards are specified in terms of a spectral mask that the trasigints. The above procedure resulted in alefigth 51; there-
mitted signal must satisfy. Therefore, an alternative measurefofe, orthogonality is achieved for the price of a mild increase
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 10"
f, cycles-per-sample

(a) Designed orthogonal filter, L = 51.

) L
[ 12 14 18

N s ]
E/N,, dB

Fig. 6. Calculated (lines) and simulated (circles) chip error rates (CER)
against signal-to-noise ratio for the filters in Example 4. Legend—Solid:

NN a VAl : ) designed filters; dash-dot and circle: 1S95 filter.

and 1079, the signal-to-noise ratio gains are 1 dB and 2.4 dB,
respectively. O

[a2]
:i‘”‘ In Example 4, we used Problem 4 to find a minimal-length
§ orthogonal filter for a fixed spectral mask bandwidth, which is
7 analogous to Problem 2. The corresponding problem of finding
& Sl the minimal spectral mask bandwidth for a givBnwhich is

~or R T analogous to Problem 1, is formulated in the next section.

-=or C. Compensation for the Smoothing and Antialiasing Filters

M . . , In this subsection, we adjust the design of the pulse-shaping
0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5 T 1 1cti

¥, cycles-per-sample filter to compensate for the nonideal characteristics of the
b) 1S95 filt nogonal). I = 4 smoothing and antialiasing filters. In most implementations,
®) er (non-orthogonal), = 48. these characteristics will be available to the designer with

Fig.5. Relative power spectra (in decibels) of the filters in Example 4 with tf{eeasc,)nable accura_cy: . L .
spectral mask from the 1S95 standard. Using the analysis in Section Il, we can eliminate any ISl in a

distortionless channel if we ensure that 7. ¢, (¢1'/N )ry[q—

in filter length. The frequency response of the designed filtdf”"l = d[n]- (Correlation of the white noise could be handled
is shown in Fig. 5(a). We observe that the equiripple charactd}-2 Similar way.) By exploiting the symmetry of,[m], this
istic associated with conventional linear-phase filters satisfyiggndition can be rewritten as

such masks does not extend to the case of minimum phase or- L—1

thogonal filters. As can be seen from Fig. 5(b), the I1S95 filter7>¢s¢r(nT)Tg[()] + Z (rg.6. (0T +mT/N)

satisfies the spectral mask by a considerable margin. Using the m=1

same SDP-BS method, the minimal length filter satisfying both + 74,6, (T —mT/N))ry[m] =6[n]. (13)

the maskachievedy the IS95 filterandthe orthogonality con-
straints was found to have = 60. As an aside, we point out thatFor complete ISI cancellation, this set of linear equations must
the shortest (approximately orthogonal) sampled and truncatesd for all n. For generab;(¢) and ¢,.(¢), that may lead to
square-root raised cosine filter that satisfies the mask specifaat overdetermined linear system. Fortunatgly(t) and ¢,.(¢)
in 1S95 has a lengtl. = 108 and a roll-off factor in a small are usually essentially time limited in practice, and hence, the
interval aroundy = 0.135. dominant components of ISI can be cancelled by enforcing (13)
To demonstrate the performance improvement due to the @or appropriate values of clustered around the origin. In order
thogonality of the designed filter, we evaluated the chip errtw provide normalization for,[m] and to leave some freedom in
rate (CER) for each filter for the case of binary chips transy[m] so that other constraints can be satisfied, we will enforce
mitted with energyE over an additive white Gaussian nois€13) forn = 0 and Mgy values ofn, whereNigr < L — 1. The
channel with noise varianch/2 with sign detection (of the choice Nist = |(L — 1)/N| will ensure the same number of
chips) at the receiver. This was done analytically (by usingegjuality constraints on,[m] as there were in (9a). We note that
formula from [1, p. 65]) and via simulation. Since the designafl¢.(¢) = ¢..(t), then using the resulting symmetry:Qf. ,,_(7),
filters are orthogonal, their CER’s af¢/2) erfc(y/E/Ny) [1], we only need to consider non-negative values: of (13). In
[2]. The results are plotted in Fig. 6. Note that for CER’¢0f>  that case, twice as many ISI terms can be cancelled.
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In Formulation 1, we enforced an energy bandwidth constraint
on the filter via the linear constraint eg[m] in (9b). If, instead, ol
we wish to enforce the energy bandwidth constraint directly on «
s.(t), (9b) can be replaced B> 5t (v,, — yw)rylm] > Lo
ywo — vo, Wherev,, = [FT/¥ | @, (fN/T)|? cos(2nm f) df, "
Wy = 5/2 |®s(fN/T)|? cos(2rmf) df, andB, is the energy ,;:T:
bandwidth ofs.(¢). This constraint remains linearig[m] or~, S
and hence, afilter that minimizésor maximizesy can be found é
in an analogous way to its idealized version (Problems 2 and oul
3, respectively). Furthermore, for a typichl(F"), a filter that
minimizesB, can be found by an SDP-BS method once we have |
found a feasibleB,. (using, say, an iterative doubling scheme). “
Absolute magnitude mask constraints of the faifa ,(F) < o9 - . - - < N
S, (F) < M., (F) can also be imposed on(t) simply by L
choosingM(f) = TM.(fN/T)/(va|®,(fN/T)|*) and

_ ’ 2y Fig. 7. Ratio of minimal achievable stopband edge.,;» to the stopband
M.(f) TMe,u(fN/T)/(va|@s(fN/T)|") in (12). (Here, edge in IS95F, 1505 for an orthogonal waveform generated from a filter of

we have impIicitIy assumed thab, (fN/T) is nonzero for length L, marked withx's (calculated in Example 5). The circle denotes the
f € [0,1/2]. All practical smoothing filters have this property.)position of the (nonorthogonal) waveform generated from the filter in the 1S95

The case of a relative spectral mask can be handled in Sgfdard.
analogous manner.
We now show how to find the minimal achievable bandwidtp, () have been chosen to be root cosine roll-off filters with

in the sense of a spectral mask es{t) subject to the can- respect toZ,. /N, with roll-off factor &« = 0.5. In that case,
cellation of the dominant ISI components. This is analogoygth Vg = |(L — 1)/N], (13) collapses to (9a). In Fig. 7,

to Problem 1 but with a spectral mask measure of bandwidffe plot the variation of the ratio of the minimal stopband edge
and compensation for the smoothing and antialiasing filters. Rgrthe stopband edge chosen in the 1S95 standard against filter
simplicity, we consider a relative spectral mask of the standaehgth. Note that fol. = 96, the stopband edge has been re-
lowpass type used in the IS95 standard (and in Example 4), tagked by 9.16%. The power spectrum of the resulting waveform

is, with natural notation p(t) = 32, g[kl¢s(t — kT./N) is plotted in Fig. 8 along with
() Ay, for0<|F|<F, that generated by the 1S95 filter with the samét). N O
Peyt =\ -, for|F|>F, In Example 5, we found the most spectrally efficient wave-

form for a pulse shaping filter of a given length, where spectral
peu(F) = {AO’ Ior 0<|F| <F/ efficiency was measured by;. Alternatively, we could fix the
Ay, for |F| = F,. spectral mask and measure spectral efficiency as the maximal
In that case, the problem can be formulated as follows. symbol ratel /7" such that the spectral mask is satisfied. (This
Problem 5: Given F},, Ag, Ay, A, ¢.(t), ¢.(t), T, N, L, problem is different from that in Problem 5 because adjusiing
andNsr < L — 1, find a filter achievingmin F,, over variables changes both the passband and stopband edges of the spectral
rglml, m = 0,1,...,L —1,P = PT, ¢, and F, subject to mask ong[k].) Although it is again true that for a fixedl we
¢>0,F, >0, (13) forn = 0, and Nisr other values of,  obtain a semidefinite feasibility problem, there may be disjoint
chosen according to the characteristics 9f;, (1), (9¢c), and intervals ofT" for which the new problem is feasible. Hence, a
' simple bisection search may not find the globally minirial
CM(f) < Ry(e?*F) < (M, (f), forall f€[0,1/2] (14) Fortunately, more sophisticated, but less efficient, searches can
. . beused instead. As an example, for the scenario in Example 5
whereM(f) = 10/761(”/T)/10/|q)s(fN/T)|2’ andM.,(f)is and a filter length ofL = 96, the chip rate of an IS95 scheme

defined §imilarly. . e ... can be increased by 9.11% while maintaining the spectral mask
For afixed value of’,, Problem 5 is a semidefinite feasibility and orthogonality

problem in variables,[m], P, and¢. Furthermore, the minimal
F, can be found by an SDP-BS method once we have found a
feasibleF,.

Example 5: We now find the relationship between the min- In many communications applications, there may be signifi-
imal stopband edge and the length of the pulse shaping filter frant timing “jitter” on the sampler at the receiver. That is, with
the spectral mask in the 1S95 standard, subject to the elimimaference to Fig. 2, the samples are taket at AT/N + ¢,
tion of interchip interference in a distortionless channel. Minwhere—7"/(2N) < ¢, < T/(2N) rather thart = kT/N. In-
mizing the stopband edge minimizes the frequency separatibeed, in some cases, timing jitter may be the dominant source
required between an 1S95 scheme and an adjacent occupdn§l. In this section, we show that the design of a filter that is
of the spectrum. (The benefit is twofold if the adjacent occumaximally robust to timing error in a mean square error sense
pant is also operating an I1S95 scheme with a minimal stopbareh be formulated as an SDP.
edge.) We choos& = 4 and assume that the chip sequence is To model and analyze the case where timing error is the dom-
white and that the smoothing and antialiasing filt¢gét) and inant source of ISI, we can consider the channel to be distortion-

V. ROBUSTNESS TOTIMING ERROR
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wherev, = wvq/v,, is the “signal-to-noise ratio.” Hence, the
average MSE is

() = / )eZ de 17)

2N

wherepg(e€) is the probability density function (pdf) fer(at the
given SNR). (In deriving (17), we have implicitly assumed that
the timing error is independent of the data and the white noise.)
As shown in the Appendix, the average MSE can be rewritten as

<c§> = r;Qrg + lTrg +1 (18)
5 where[rg]m = 74[m], 0 < m < L — 1, and the vectot =
o o5 1 5 2 25 l,,. /v, — 214. Here, the elements @& andl; depend ore.[£]
F, MHz andpg(e), and those ol, depend onvy o (mT/N). By its
(a) Designed (orthogonal) waveform, L = 96 very naturee?) > 0 for aII r,, and therefore, the expression

in (18) is a convex quadratic function ef[m]. Hence,Q is a
positive semidefinite matrix, and there is Bix rank( Q) matrix
L such thatQ = LL7.

A natural objective is to minimize the average MSE, but that
objective is a quadratic function and, hence, is not expressed as
an SDP. To cast the minimization ¢f2) as a (convex) “sym-
metric cone” program (of which SDP’s are a special case), we
observe thate?) < o +1%7r, + 1 for somes € R, if and only if

L rgll3 < o (19)

Therefore a filter that generates a waveform that a) satisfies a

(general) relative spectral mask sg(¢) and b) provides max-
mmm{\ﬂ imal robustness to timing error can be found as the solution of
the following “symmetric cone programme.”

F MHz e Problem 6: Givenp, ¢(F'), peu(F), ¢s(t), ¢r(t), vp, pE(€),
T, N andL, find a filter achieving

(b) 1895 waveform (non-orthogonal), L = 48.

mino +1%'r, (20)
Fig. 8. Relative power spectra (in decibels) of two of the waveforms in . ) - DT
Example 5, with the spectral mask from the 1S95 standard. over Va”aplegg[m]’ m =01,...,L-1P =P, oand
¢ > 0 subject to (9c), (14), (19) and

. L-1

less. Ife;, varies slowly, the(k c[k —m]s[m]+nlk
12 2 cell = mlsfml .6 O, 01+ 3 (16, (mT/N)

wheree, = e, cg[k] =146 (KT/N +¢), andnlk] = [ ¢.(t — —

KT/N — F)?’]C( ) dt. For that model + 140, (—mT/N))ry[m] = 1 (21)

5 _ ) , : , herel = 1, /v, — 214, L is such thaQQ = LL”, andQ, 14
dn] — d[n] = ’ Ni| — 6[d] | d[n +1 W m: ) Vp  ds . : Y
7] ig Z <§p: celplrylp + il M) v+ andl,, are given in (22)—(24) in the Appendix, respectively.

Here, we have normalized,[m] in (21) so that there is a
+ Zg[k — Nafn[k]. 19 unit gain for the desired data symbol in the absence of timing
k error. Problem 6 consists of a linear objective (20), subject to a
If the data is stationary and white with zero mean and variantigear equality constraint (21), linear inequality constraints (14),
vg and the channel noisg(t) is stationary and white with zero a linear matrix inequality (9c) and a rotated second-order cone
mean and variance,, and is not correlated with the data, therj44] constraint (19). Hence the optimal autocorrelation can be
for a givene, the mean square error (MSE) in the data estimaggficiently found using tools for linear optimization over (cer-

%

(normalized byUd) is tain) symmetric cones, such &sbuMi [35]. An optimal filter
N can be found using either of the one-stage or two-stage methods,
{(d[n D} as discussed after Problem 3.
2 As one would expect, the optimal filter for Problem 6 is de-
<Z celplrglp + Ni] - M) pendent on the SNR. If the SNR varies, a filter which minimizes
the worst-case MSE over a range of SNR’s, or the expected
+ = Z Tos (MT/N)ry[m] (16) MSE over a distribution of SNR’s, can often be found by solving

Problem 6 for modified values & andl. Furthermore, if we

/7 m
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are able to desigp,.(¢) so that it is self-orthogonal ang(#)
so that it is mutually orthogonal t9,.(¢), then (21) reduces to
r4[0] = 1, (18) reduces t¢e?) = rI'Qr, — 2101, + 1/v, +1
and the optimal filter becomes independent of the SNR.

We point out there is no explicit orthogonality constraint in
Problem 6. Instead, we trade some ISl in the case of perfect _
timing for improved robustness in the presence of timing error. \‘—‘é >
(We can also trade ISl for satisfaction of the spectral mask.) * o
However, in the absence of timing error, #f.(¢) is self-or-
thogonal andp,(t) and ¢,.(t) are mutually orthogonal, then
(c2) = €8 = e x(rg[NE] — 6[4])* + 1,[0]/v,, where
K = [(L — 1)/N]. In that case, (21) reduces tg[0] = 1
and a global minimizer ofe?) subject to (21) has,[¢{N] = 0 I R N R B :
for/ = 1,2,..., K, which is precisely the orthogonality con- e v 7_3 in u“nits osz s“econd’s &
straint in (9a). (Of course, the resulting(t) might not satisfy ' ¢
the spectral mask.)

Example 6:In this example, we design another filter to ors
compete with the filter specified for the synthesis of the chip
waveform in IS95 [28]. We choose the smoothing and an- -
tialiasing filters from Example 5 and consider an additive white It
Gaussian noise channel in which the receiver is subject to a
slowly varying timing errok with a (symmetric) triangular pdf
onle| < T./(2N) that is independent of the SNR. (This pdfis
a representative choice that generates severe timing jitter with :é
the likelihood of a given timing offset decreasing with its size.) 0
The filter of lengthL = 96 that provides maximal robustness
to this timing error, subject to the spectral mask constraint on
s.(t) from the 1S95 standard, was found by solving Problem 6
(which is independent of the SNR in this case). The resulting i : : : : : :
autocorrelation function for the waveforp(t) in (2) can be arb— ! s . H " !
written asrp,(7) = >, rglmlre.s. (7 + mI./N) and is 7, in units of T}, seconds
shown in Fig. 9. For comparison, Fig. 9 also contaips(r) (b) Detailed view.
for the IS95 filter and the orthogondl = 51 filter from
Example 4. The improved robustness to timing error of thﬁ’g. 9. Autocorrelations of the waveformgt) for the filters in Example
newly designed filter is clear from the fact tHB,Ep(TN is small 6. Legend—Dashed: robust designed filter with="96; solid: orthogonal
in the neighborhood of = n7., n # 0. That the 1S95 filter designed filter withL. = 51 from Example 4; dash-dot: IS95 filter.
generates significant interchip interference even in the absence
of timing error is clear from the fact that,,(n7.) # 0 for
n # 0.

To demonstrate the performance improvement of the newly
designed filter, we simulated the chip error rate for each filter
in a modified version of the scenario in Example 4 in which 107
the receiver is subject to slowly varying timing error with the
above pdf. The resulting chip error rate curves are plotted in
Fig. 10. Since the spectral mask constraints are quite “tight,” a .
significant increase in the filter length was required in orderto
obtain an appreciable improvement in CER over the orthogonal [
L = 51 filter from Example 4. O

(a) Broad view.

0.05F

VI. CONCLUSION

s
E/N,, dB

We have shown that the design of orthogonal pulse shapes
for waveform coding can be formulated as a convex semidef-
inite program, and hence, globally optimal waveforms can . 10. Simulated chip error rates (CER) against signal-to-noise ratio for the

found in an efficient manner. The formulation was motivated Hyefs in Example 6. Legend—Dashed: robust designed filter ditk= 96;
olid: orthogonal designed filter with = 51 from Example 4; dash-dot: 1S95

the observation that the deployment OT baseband _digit.al sigp r, dotted: calculated CER for an orthogonal chip waveform in the absence
processors removes many of the physical constraints in anaé®gming error.
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waveform coding applications and by a desire to exploit the re- APPENDIX
sulting design freedom in an efficient manner. The formulation DERIVATION OF (18)
is based on the fact that many of the desirable properties of aExpanding (16), we have that
coding waveform are actually properties of its autocorrelation. '
In particular, orthogonality is a linear constraint on the auto- 2 = ng[ﬁ]rg[m] Z c[t = Nile.[m — Ni]
correlation. We applied the Positive-Real Lemma to transform T 7
the rather awkward semi-infinite linear inequality constraint that
appears in some current autocorrelation-based design methods —2 Z rglmlecfm] +1
into a finite linear matrix inequality. An advantage of this trans- 1 "
formation is that the minimum-phase spectral factor and, hence, + — Z rglmlre, ¢, (T /N)
an optimal waveform, can be obtained directly from the output Y T
of the optimization routine. N VARV VT vy,
Although there are many waveform designs that can be for- =1, Qcry+ <1nc/% - 21d,e> ry+1
mulated in this way, we focussed on three of them, namely
a) the minimal bandwidth for a given filter length; where[¥g]m = rglm], 1 — L < m < L — 1. Here, the ma-
b) the minimal filter length for a given bandwidth; v

¢) the maximal robustness to timing error.

. . . n
Bandwidth was measured either in spectral energy concent"jrla—d

trix Q. = > ¢ e, = C.CT, with [cc j]i = celi — Nj]
[C.lij = c[¢ — NjJforl — L < ¢ < L -1, and the
v

\4
tion terms or with respect to a spectral mask. We demonstras&ttors(l, |, = r4 ¢, (mI/N) and[ly ]m = c[m]. Since
the effectiveness of our design technique by designing “chip[—m] = 74[m], we have that

waveforms” with superior performance to that of the chip wave-

forms specified in recent standards for CDMA-based mobile v 0 J
telecommunication systems. The efficiency of the design tech- rg="Try =11 017,
nique was demonstrated by the small computation times in the 01
examples (compared with the times that would be required f\%ere[rg]m = r,[m], m = 0,1,...,L — 1, andI andJ are
reliable solution of the nonconvex formulations). We are cufpe identity and exchange matrices, respectively, of dimension
rently exploring some reformulations of our design proble — 1) x (L — 1). Substituting the above expressions into (17),
into forms that more closely match the internal structure of afze optain (18), in which
gorithms for the solution of the semidefinite programs. Initial
experiments indicate that the computation times can be further Q=17 /pE(e)é deT (22)
reduced by factors of several tens for the problems considered ‘
in this paper. T v

Sincg t%e intersection of two convex sets is itself convex, la=T / pE(€)lacde (23)
many combinations of the problems considered in this paper can v
be solved using similar techniques. Furthermore, there are other L. =T 1y, (24)

pulse-shape characteristics that can also be incorporated into the

vV

semidefinite program. For instance, some recent work has ingibere the integrals are taken elementwise. Sigce= C.C?
cated that robustness to frequency-selective fading can be niggPositive semidefiniteQ is also positive semidefinite, and
sured in terms of a convex quadratic function of the autocorréence Q = LL” for some matrixL.

lation [45]. The techniques of this paper can be easily extended
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