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Abstract—In digital communications, orthogonal pulse shapes
are often used to represent message symbols for transmission
through a channel. In this paper, the design of such pulse shapes is
formulated as a convex semidefinite programming problem, from
which a globally optimal pulse shape can be efficiently found. The
formulation is used to design filters that achieve

a) the minimal bandwidth for a given filter length;
b) the minimal filter length for a given bandwidth;
c) the maximal robustness to timing error for a given bandwidth

and filter length.
Bandwidth is measured either in spectral energy concentration
terms or with respect to a spectral mask. The effectiveness of the
method is demonstrated by the design of waveforms with substan-
tially improved performance over the “chip” waveforms specified
in recent standards for digital mobile telecommunications.

Index Terms—Code division multiaccess, multirate FIR digital
filters, optimization methods, pulse amplitude modulation, signal
design.

I. INTRODUCTION

ONE OF THE fundamental operations in digital commu-
nications is the representation of a message symbol by an

analog waveform for transmission through a channel (waveform
coding) [1], [2]. The choice of such waveforms critically affects
the performance of a communications scheme and usually
involves a compromise between system capacity, robustnessto
expected channel imperfections and interference, system delay,
and transmitter and receiver complexity. The most common
waveform coding techniques involve linear pulse amplitude
modulation of a self-orthogonal (“root Nyquist”) waveform
or an approximation thereof. In conventional communication
systems, the available analog waveform coding technology
has tended to restrict orthogonal waveform design to a choice
among a small set of waveforms. However, the increasing
deployment of baseband digital signal processors has extended
the class of waveforms that can be easily implemented. In such a
situation, the design of the waveform can be transformed to the
design of an orthogonal multirate discrete-time finite impulse
response (FIR) filter [3], [4]. Unlike conventional single-rate
FIR filter design objectives, which can often be formulated
as optimization problems with analytic or computationally
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efficient solutions [5]–[7], the orthogonal multirate FIR filter
design problem has a translation orthogonality constraint [3],
[4], which is not convex. Such nonconvexity can lead to the
standard problems of local minima in the design process.

Fortunately, many of the desirable properties of an orthog-
onal waveform are actually properties of the autocorrelation
of the waveform. By reformulating the design problem in
terms of the autocorrelation sequence of the “pulse-shaping”
filter, the translation orthogonality constraints become linear
and, hence, convex. Once the autocorrelation sequence has
been designed, the transmission and reception filters can be
extracted (nonuniquely) by spectral factorization. In this way,
many pulse-shaping filter design problems can be formulated
as linearly constrained convex minimization problems [8]–[13].
Unfortunately, an infinite set of linear constraints is required to
ensure that the designed autocorrelation has a spectral factor,
and such sets can be rather awkward to deal with in practice [8],
[14]. In this paper, we employ a state space parameterization of
the autocorrelation sequence and use the positive-real lemma
[15] to transform the semi-infinite linear constraint into a finite
linear matrix inequality. The transformed (autocorrelation
design) problem is a convex semidefinite program (SDP) [16]
whose globally optimal solution can be found in an efficient
manner using interior point methods [17]. Furthermore, the
minimum-phase spectral factor can be extracted directly from
the output of the optimization routine by using a result of
Andersonet al. [18]. This renders the auxiliary spectral fac-
torization step unnecessary. We point out that the positive-real
lemma has been briefly proposed for the transformation of
conventional single-rate FIR filter design problems from
semi-infinite convex programs [19] to SDP’s [20] without
the direct extraction of the minimum-phase spectral factor.
We also point out that the autocorrelation sequences that we
design fall into a subclass of linear-phase Nyquist filters. The
design of a general Nyquist filter does not require the “spectral
factorizability” constraint and, therefore, tends to be simpler
[21]–[27] (especially in the linear phase case), but the resulting
transmission and reception filters may have different spectra.

We will show that many important pulse-shaping filter design
problems can be cast as a sequence of semidefinite feasibility
problems and, hence, can be solved efficiently. The problems
considered here include finding filters that achieve

a) the minimal bandwidth for a given filter length;
b) the minimum filter length required to achieve a certain

bandwidth;
c) the maximal robustness to timing error for a given filter

length and bandwidth.
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Fig. 1. Model of a baseband digital communication scheme.

Here, bandwidth is measured either in spectral energy concen-
tration terms or with respect to a spectral mask. We also show
that simple modifications to the design framework allow com-
pensation for nonideal characteristics of the analog smoothing
filter at the transmitter and antialiasing filter at the receiver. The
applicability of our techniques are demonstrated in several ex-
amples in which we design “chip” waveforms with superior per-
formance to those specified in recent standards for code division
multiple access (CDMA)-based mobile telephony [28], [29].

In related work, the problem of maximizing the percentage
of signal energy in a given bandwidth, subject to the orthog-
onality constraints, has previously been posed as a nonconvex
constrained optimization problem [3], [4]. In this paper, how-
ever, we show that it can also be formulated as a convex SDP
and, hence, efficiently solved. An alternative semi-infinite linear
programming (SILP) formulation can be extracted from [13].
(The design of a more general Nyquist filter with this objective
results in an eigenvalue problem [21], [23], [25].) When the en-
ergy bandwidth criterion is replaced by certain spectral mask
measures of bandwidth, pulse-shaping filters can be found via
SILP [8] via modified Remez algorithms [9], [12] or via an SDP
(see Problem 4 in Section IV-B), with the finite nature of the
“spectral factorizability” constraint being an advantage of the
SDP.

II. BASEBAND PULSE AMPLITUDE MODULATION

Consider the standard model for a baseband digital communi-
cation scheme in Fig. 1. For notational convenience, we consider
only real-valued systems, but the methods can be extended to
the complex-valued case in a straightforward manner. We allow
(finitely) noncausal filters in our model with the understanding
that an appropriate delay will be required for implementation.
The data are waveform coded by pulse amplitude modulation
(PAM) as

(1)

and are transmitted through a linear time-invariant (LTI) base-
band equivalent channel with additive noise and interfer-
ence modeled by . The received signal is passed through the
“matched” filter and is synchronously sampled to form the
data estimate . Such a scheme can be conveniently imple-
mented using digital signal processors (DSP’s) at the transmitter
and receiver, as shown in Fig. 2, where the filter has a finite
impulse response (FIR) of length

(2)

and the matched filter is .
Here

smoothing filter in the digital-to-analog converter
(DAC);
oversampling rate;
“anti-aliasing” filter at the receiver.

For that implementation, we can form an equivalent dis-
crete-time model in which
is deemed to be the transmitted signal, and

, where denotes convo-
lution, is the discrete-time equivalent channel, which can be
written as

(3)

where . The received version
of is , where

. The data estimates are then given by
, which can be written as

(4)

where is the equivalent channel

from an inter-symbol interference (ISI) perspective,
is the autocorrelation sequence of the filter

, and is the effect of the noise
on .

A common design goal is to find a waveform that min-
imizes the spectral occupation of the communication scheme
subject to the constraint that the filters are self-orthogonal at
translations of integer multiples of. The orthogonality con-
straint ensures that there is no ISI in a distortionless channel and
that the receiver filter neither amplifies nor correlates the white
noise component of the external interference. If the channel is
distortionless, then . Therefore, by exam-
ining (4), for the DSP-based scheme in Fig. 2, a) there is no ISI in
a distortionless channel if ,
where denotes the Kronecker delta, and b) there is no ampli-
fication nor correlation of the white noise component of if

. In applications in which
both and are sufficiently close to

, the orthogonality constraint can be imposed directly on the
filter [see (5a) and (9a)].

The spectral occupation of a communication scheme is usu-
ally measured in terms of its (time-averaged) power spectrum.
For the simple case of stationary white data with zero mean
and variance , the power spectrum of is

, where
and are the Fourier transforms of

and , respectively, and we have used to
denote frequency in a continuous-time setting. One commonly
used measure of the spectral occupation of a communication
scheme is the % energy bandwidthof denoted
[3], [4], [13], [21]. It is defined to be the smallest such that
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Fig. 2. Multirate digital signal processing implementation of the scheme in Fig. 1.

. If is sufficiently
close to the ideal filter of bandwidth , then

and hence, , where is the % energy
bandwidth of , which is defined to be the smallest
such that . The
term is known as thepower spectrumof .
For convenience, we will often normalize the filter energy so
that . Finally, we
observe that the Fourier transform of the autocorrelation
satisfies

.

III. A F EASIBILITY PROBLEM

In this section, we introduce the fundamentals of our design
framework by studying various formulations of the following
simple feasibility problem for the filter in Fig. 2:For a given

and , either find an orthogonal filter of length at
most with a % energy bandwidth less than or equal to
or show that none exists. If we formulate this problem directly in
terms of the filter coefficients, the orthogonality and bandwidth
constraints are

(5a)

(5b)

respectively, where denotes the greatest integer . Unfor-
tunately, both these constraints are nonconvex in the parame-
ters . As a result, determining an answer to the feasibility
problem may be complicated by the presence of local minima,
particularly when we wish to determine that no solutions exist.
However, using relationships from Section II, we can param-
eterize the problem in terms of the autocorrelation , re-
sulting in the linear constraints in (9a) and (9b) and the addi-
tional linear inequality constraint

for all (6)

This additional constraint is a necessary and sufficient condition
for to be factorizable (by the Féjer–Riesz theorem [30]).
The linearity of these constraints ensures that the (autocorre-
lation) design problem is a linearly-constrained convex feasi-
bility problem. Once a feasible autocorrelation has been found
(via any of the standard linear programming techniques [31], in-
cluding those based on interior point methods), a feasible filter

can be found by spectral factorization. (An informative review
of spectral factorization techniques appears in [19].) Further-
more, duality results can be exploited to provide a “certificate”
(i.e., verification) of infeasibility when there is no feasible so-
lution. Unfortunately, the non-negativity constraint in (6) is a
semi-infinite constraint in that it must be satisfied for all values
of . Although that constraint can be handled using
discretization techniques [14], such an approach may lead to
overly conservative designs and can be rather awkward numer-
ically in our application [8].

We now apply the Positive-Real Lemma to transform
the semi-infinite constraint in (6) into a finite-dimensional
constraint with some auxiliary variables and, hence, avoid
the above-mentioned difficulties. The lemma will employ the
well-known concepts of controllability and detectability of a
state space realization [32], [33].

Lemma 1 (Positive-Real Lemma):Let be a (stable) real
rational function with its poles (if any) inside the unit circle.
Suppose that is finite and that admits a control-
lable and detectable state-space realization

, with . Then, for all
if and only if there exists a real symmetric matrixsuch

that

(7)

This lemma appears in a variety of forms in the literature (see
[15], [18], [32], [34], and references therein). The present form
(based on [34]) is chosen because it requires only detectability
(rather than observability) of the realization of and be-
cause the symmetric matrix is unconstrained. This allows
us to avoid redundant constraints in Formulation 1. Using the
“stability” of and a result of Lyapunov [33], it can be
shown that all symmetric matricessatisfying (7) are positive
semidefinite: a result that will be exploited in Lemma 2.

Since , the realization
with

(8a)

(8b)

and satisfies the conditions
of Lemma 1. (If , the realization is observable.)
Using this realization, the feasibility problem can be cast as the
following formulation.

Formulation 1: Given and , either find
, and with

being a scalar such that

for (9a)



1436 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 5, MAY 2000

(9b)

(9c)

or show that none exist.
Formulation 1 consists of linear constraints [(9a) and (9b)]

and a linear matrix inequality (LMI) constraint (9c). Hence, it
is a semidefinite feasibility problem [16] and can be solved in a
highly efficient manner using interior point methods [17]. (Sev-
eral generic SDP solvers are available, including the MATLAB -
based package [35].) Semidefinite programming tech-
niques have been applied to efficiently solve a number of other
engineering problems, including many in control [36], [37] and
a few in signal processing [20], [38], [39]. We point out that
in Formulation 1, the orthogonality constraint (5a) is enforced
precisely by (9a) and that both the bandwidth constraint (5b)
and the non-negativity constraint (6) are enforced precisely [by
(9b) and (9c), respectively], without discretization in frequency.
In contrast, enforcing a simple sampled version of the non-
negativity constraint (6) in a linear programming formulation
involves a compromise between the number of discretization
points (i.e., the number of constraints) and the conservativity
factor , which is chosen such that

guarantees that for all
. (A “rule of thumb” is to choose , [19].)

The concession for the precision of Formulation 1 is the LMI
and the additional variables in the symmetric
half of . Although the resulting SDP may require a greater
computational effort than a (conservative) sampled linear pro-
gram with a moderate value of , the total solution time in
solving the SDP is still quite acceptable (e.g., a couple of min-
utes on a standard personal computer).

By solving Formulation 1, we obtain a feasible autocorrela-
tion or a certificate of infeasibility when there is no feasible au-
tocorrelation. In the feasible case, a feasible filter could then be
found by spectral factorization (using any of the methods sur-
veyed in [19]). An advantage of Formulation 1 is that it can be
simply modified to produce the minimum-phase [18] spectral
factor directly, without the need for auxiliary spectral factoriza-
tion, using the following lemma (collected from results in [18]).

Lemma 2: Assume the same setting as Lemma 1 and that
for some positive semidefinite matrix. Then, there

exists a minimal solution to , i.e., such
that . Let , and let

. Then,
is the minimum phase spectral factor (up to a sign ambiguity)
of .

We can obtain by replacing Formulation 1 by the following
semidefinite program.

Formulation 2: Given and , either find
, and partitioned as in Formulation

1 achieving trace subject to (9), or show that none exist.
Once Formulation 2 has been solved, a feasible filtercan

be found by direct substitution into Lemma 2, without auxiliary
spectral factorization. In that case, ,

where and were given in (8), , and
. Hence

(10)
where denotes theth element of a vector . We point out
that if is fixed, then Formulation 2 provides a convex op-
timization method for spectral factorization.

IV. SOME DESIGN PROBLEMS

In this section, we adapt the framework established in Sec-
tion III to the solution of a number of pulse shaping filter design
problems. We first discuss problems in which the spectral occu-
pation is measured in terms of the percentage energy bandwidth.
In Section IV-B, we will use alternative measures of bandwidth
based on spectral masks, and in Section IV-C, we show how the
characteristics of the smoothing and antialiasing filters can be
incorporated into the designs.

A. Using the Percentage Energy Bandwidth

A natural extension to the feasibility problem studied in the
previous section is to search for an orthogonal filter that pro-
vides the smallest % energy bandwidth for a given length

and fraction . This problem can be phrased as follows.
Problem 1: For a given and , find a filter achieving

over variables
and subject to the constraints in (9).

For a fixed value of , Problem 1 is the semidefinite feasi-
bility problem in Formulation 1. Furthermore, it can be shown
that (for ), Formulation 1 will yield a positive result
for and a negative result for , where is the
solution to Problem 1. Therefore, and the optimal autocorre-
lation can be found using a bisection search on, starting
with lower and upper values of zero and one half, respectively.
An optimal filter could then be found by any spectral factoriza-
tion technique, including solving Formulation 2 given
and , and then applying (10). As an alternative,
we could replace Formulation 1 by Formulation 2 at each stage
of the bisection search so that (10) is immediately applicable,
and an optimal filter is obtained directly. A property of many
interior point methods for the solution of Formulations 1 and 2
is that they require about the same computational effort. There-
fore, this alternative method remains efficient. We will refer to
both these solution methods assemidefinite programming based
bisection search (SDP-BS)methods. We demonstrate the appli-
cation of Problem 1 in the following example.

Example 1: In this example, we design orthogonal filters
to compete with a sampled and truncated implementation of
the filter with a square-root cosine roll-off frequency response
[40]. The roll-off factor was chosen to be . (The
same choice of filter was made for the “chip waveform” in the
UMTS proposal [29].) We choose and so
that the truncated root cosine roll-off filter remains approxi-
mately orthogonal. That filter has a 99% energy bandwidth of

. (Due to a fortuitous combination of sampling
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Fig. 3. Minimal achievable 99% energy bandwidthB for an orthogonal
filter of lengthLmarked with�’s (calculated in Example 1). The circle denotes
the position of the (almost orthogonal) truncated root cosine roll-off filter with
� = 0:22 andL = 49.

and truncation effects, this is a particularly good choice in the
sense that this filter has better spectral decay than those of length

and .) By solving Problem 1 for the same values
of and and using [35] to solve the SDP’s, the min-
imum achievable with an orthogonal filter of length can
be determined. The resulting relationship is shown in Fig. 3.
(The “ragged” but nonincreasing nature of this relationship is
due to the orthogonality constraint and is not due to numerical
error. In particular, the orthogonality constraint (9a) effectively
removes the extra degree of freedom in filters of length ,
for , over those of length by constraining it to be
zero.) For , the minimum achievable is ,
which is a reduction of more than 4% over that of the truncated
root cosine roll-off filter of the same length. The power spectra
of these two length 49 filters are plotted in Fig. 4(a). Observe,
however, that the reduced 99% energy bandwidth has come at
the expense of higher “sidelobes.” We will address this issue in
Section IV-B. In the case, the feasibility problem at
each stage of the bisection search was evaluated in under 2 min
and 45 s on a 400-MHz PENTIUM II workstation.

Of course, a minimal % energy bandwidth may not be
the primary design criterion for a pulse shaping filter. For in-
stance, we may wish to design an orthogonal filter that mini-
mizes the delay in the received data that is required to ensure
that the receiver filter is causal, subject to a constraint on the
energy bandwidth.

Problem 2: For a given and , find a filter achieving
over variables

and subject to the constraints in (9).
Problem 2 can also be be solved by an SDP-BS method, but

we must first obtain a feasible. An iterative doubling tech-
nique will always produce a feasible if one exists, but that
search can often be reduced by using the designer's insight.

Example 2: By solving Problem 2, the smallestsuch that
there is an orthogonal filter with the same as the trun-
cated root cosine roll-off filter of length 49 in Example 1 was
found to be 31. This represents a substantial reduction in delay
and computational requirements. (The problem at the last itera-

Fig. 4. Relative power spectra (in decibels) of the designed filters (solid) and
the root cosine roll-off filter (dashed) in Examples 1–3 [(a)–(c), respectively].

tion of the bisection search was evaluated in 11 s on a 400-MHz
PENTIUM II workstation.) The power spectrum of the designed
filter is plotted in Fig. 4(b). Note that as in Example 1 the de-
signed filter has higher sidelobes than the root cosine roll-off
filter.
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In Problems 1 and 2, we minimized and , respectively.
The obvious remaining problem is to maximizesuch that

. (In the absence of the orthogonality constraint, the so-
lution is a discrete-time prolate spheroidal function [41].) This
problem is important when the channel bandwidth is (physi-
cally) constrained to , and we wish to obtain the maximal
spectral energy concentration in. This problem has previously
been formulated as a nonconvex optimization over [3], [4],
but it can also be formulated as the following (convex) SDP.

Problem 3: For a given and find a filter achieving
over variables and

subject to the constraints in (9).
Problem 3 is a semidefiniteoptimizationproblem ( is a con-

cave function of the parameters), and an optimal autocorrelation
can be efficiently found from a single SDP (as distinct from the
sequence of SDP’s for the previous problems). An optimal filter
can then be extracted by spectral factorization. That results in
a two-stagemethod. Independently, but concurrently, with our
work, Tuqan and Vaidyanathan [42] showed that the design of
optimal orthogonal energy compaction filters for signal com-
pression applications can also be formulated as Problem 3. (The
corresponding semi-infinite linear programming formulation of
the design of optimal orthogonal energy compaction filters ap-
peared in [43].) In addition, they suggest replacing the objective
in Problem 3 by

trace (11)

for some constant in order to find an optimal filter in a
single-stagemethod. It can be shown that the solutionof (11)
is indeed the minimal so that (10) can be directly applied.
Unfortunately, for any positive , (11) is not equivalent to the
objective in Problem 3. Although a continuity argument sug-
gests that the the optimal solution sets for the two problems are
close for sufficiently small , the choice of appears to be rather
ad hoc. (The choice is suggested in the examples in
[42].) If an appropriate value for is difficult to determine, the
two-stage method may be more appropriate.

Example 3: By solving Problem 3 with , we can
find an orthogonal filter of length 49 that has the maximal spec-
tral energy concentration within the 99% energy bandwidth of
the truncated root cosine roll-off filter from Example 1. That op-
timal filter has 99.76% of its energy within that bandwidth. (The
solution was obtained in under 3 min and 19 s on a 400-MHz
PENTIUM II workstation.) The power spectrum of the designed
filter is plotted in Fig. 4(c) from which it is clear that increase in

has been achieved at the price of higher sidelobes. (Note that
the sidelobes of the designed filter in Fig. 4(c) are more than 3
dB below those in Fig. 4(a).)

B. Using Spectral Mask-Based Measures of Bandwidth

By choosing the energy bandwidth as our design criterion,
we lose control over the actual spectrum of the pulse shape,
as is apparent from the high sidelobes in the designed filters in
Fig. 4. This may require excessive guard bands between (unco-
ordinated) adjacent channels. In addition, many communication
standards are specified in terms of a spectral mask that the trans-
mitted signal must satisfy. Therefore, an alternative measure of

spectral occupation would be to constrain the power spectrum
to lie within a given spectral mask, i.e.,

for all (12)

for some given mask and . The mask constraints
are linear in , and hence, the convexity of the previous fea-
sibility problems is maintained. (The mask constraints arenot
convex in unless the filter is constrained to have linear phase
[19], [20]. It has been known for some time that a phase lin-
earity constraint can lead to increased spectral occupation [4].)
The mask constraint is a semi-infinite constraint, but it is less
“critical” than that in (6) in that if (12) is violated and (6) is not,
then a filter with autocorrelation does exist; it just
fails to satisfy the mask. In practice, the mask constraint can be
(conservatively) enforced using discretization techniques [14],
[19], [20]. In many applications, filter masks are specified in
terms of the relative magnitude of the power spectrum at dif-
ferent frequencies, usually on a logarithmic (decibel) scale. If
we let and denote the lower and upper relative
power spectrum bounds on , in decibels, then

, for some , and similarly for .
In Section III, we formulated the design of an orthogonal filter

of a given length that has a certain percentage energy bandwidth
as a semidefinite feasibility problem. The equivalent problem
with a spectral mask bandwidth can also be formulated as a
semidefinite feasibility problem.

Problem 4: Given and either find
and such that (9a) and (9c)

are satisfied and that
for all , or show that none exist.

Problem 4 can be used as the subproblem in an SDP-BS
method to find a minimal length filter for a given spectral mask,
as we demonstrate in the following example.

Example 4: In this example, we design a filter to compete
with the filter specified for the synthesis of the chip waveform in
the IS95 standard [28]. Assuming an ideal smoothing filter, the
standard requires a filter with a1.5-dB ripple in the passband

and 40-dB attenuation in the stopband ,
where , and . The
filter chosen in the standard has linear phase, , and

, and hence, , and . Whereas
that filter satisfies the spectral mask, it does not satisfy the or-
thogonality constraints (see Fig. 9 in Example 6). Hence, the
IS95 filter can induce substantial “interchip” interference even
when the physical channel is benign. Therefore, we seek a min-
imal length filter such thatboththe (relative) frequency response
mask is satisfiedandthe filter is orthogonal. A globally optimal
solution to this problem was found using an SDP-BS method
based on Problem 4. The last SDP in the search was solved
(using [35]) in just under 7 min and 20 s on a 400-MHz
PENTIUM II workstation. The increase in computational time
over that in Examples 1–3 is due to the nature of the bandwidth
constraint. The energy bandwidth constraint is a single linear in-
equality in Examples 1–3, whereas the spectral mask constraint
in this example is enforced by around 950 linear inequality con-
straints. The above procedure resulted in a length ; there-
fore, orthogonality is achieved for the price of a mild increase
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Fig. 5. Relative power spectra (in decibels) of the filters in Example 4 with the
spectral mask from the IS95 standard.

in filter length. The frequency response of the designed filter
is shown in Fig. 5(a). We observe that the equiripple character-
istic associated with conventional linear-phase filters satisfying
such masks does not extend to the case of minimum phase or-
thogonal filters. As can be seen from Fig. 5(b), the IS95 filter
satisfies the spectral mask by a considerable margin. Using the
same SDP-BS method, the minimal length filter satisfying both
the maskachievedby the IS95 filterandthe orthogonality con-
straints was found to have . As an aside, we point out that
the shortest (approximately orthogonal) sampled and truncated
square-root raised cosine filter that satisfies the mask specified
in IS95 has a length and a roll-off factor in a small
interval around .

To demonstrate the performance improvement due to the or-
thogonality of the designed filter, we evaluated the chip error
rate (CER) for each filter for the case of binary chips trans-
mitted with energy over an additive white Gaussian noise
channel with noise variance with sign detection (of the
chips) at the receiver. This was done analytically (by using a
formula from [1, p. 65]) and via simulation. Since the designed
filters are orthogonal, their CER’s are erfc [1],
[2]. The results are plotted in Fig. 6. Note that for CER’s of

Fig. 6. Calculated (lines) and simulated (circles) chip error rates (CER)
against signal-to-noise ratio for the filters in Example 4. Legend—Solid:
designed filters; dash-dot and circle: IS95 filter.

and , the signal-to-noise ratio gains are 1 dB and 2.4 dB,
respectively.

In Example 4, we used Problem 4 to find a minimal-length
orthogonal filter for a fixed spectral mask bandwidth, which is
analogous to Problem 2. The corresponding problem of finding
the minimal spectral mask bandwidth for a given, which is
analogous to Problem 1, is formulated in the next section.

C. Compensation for the Smoothing and Antialiasing Filters

In this subsection, we adjust the design of the pulse-shaping
filter to compensate for the nonideal characteristics of the
smoothing and antialiasing filters. In most implementations,
these characteristics will be available to the designer with
reasonable accuracy.

Using the analysis in Section II, we can eliminate any ISI in a
distortionless channel if we ensure that

. (Correlation of the white noise could be handled
in a similar way.) By exploiting the symmetry of , this
condition can be rewritten as

(13)

For complete ISI cancellation, this set of linear equations must
hold for all . For general and , that may lead to
an overdetermined linear system. Fortunately, and
are usually essentially time limited in practice, and hence, the
dominant components of ISI can be cancelled by enforcing (13)
for appropriate values of clustered around the origin. In order
to provide normalization for and to leave some freedom in

so that other constraints can be satisfied, we will enforce
(13) for and values of , where . The
choice will ensure the same number of
equality constraints on as there were in (9a). We note that
if , then using the resulting symmetry of ,
we only need to consider non-negative values ofin (13). In
that case, twice as many ISI terms can be cancelled.
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In Formulation 1, we enforced an energy bandwidth constraint
on the filter via the linear constraint on in (9b). If, instead,
we wish to enforce the energy bandwidth constraint directly on

, (9b) can be replaced by
, where

, and is the energy
bandwidth of . This constraint remains linear in or ,
and hence, a filter that minimizesor maximizes can be found
in an analogous way to its idealized version (Problems 2 and
3, respectively). Furthermore, for a typical , a filter that
minimizes can be found by an SDP-BS method once we have
found a feasible (using, say, an iterative doubling scheme).
Absolute magnitude mask constraints of the form

can also be imposed on simply by
choosing and

in (12). (Here,
we have implicitly assumed that is nonzero for

. All practical smoothing filters have this property.)
The case of a relative spectral mask can be handled in an
analogous manner.

We now show how to find the minimal achievable bandwidth
in the sense of a spectral mask on subject to the can-
cellation of the dominant ISI components. This is analogous
to Problem 1 but with a spectral mask measure of bandwidth
and compensation for the smoothing and antialiasing filters. For
simplicity, we consider a relative spectral mask of the standard
lowpass type used in the IS95 standard (and in Example 4), that
is, with natural notation

for
for

for
for

In that case, the problem can be formulated as follows.
Problem 5: Given

and find a filter achieving over variables
and subject to

(13) for and other values of
chosen according to the characteristics of , (9c), and

for all (14)

where , and is
defined similarly.

For a fixed value of , Problem 5 is a semidefinite feasibility
problem in variables and . Furthermore, the minimal

can be found by an SDP-BS method once we have found a
feasible .

Example 5: We now find the relationship between the min-
imal stopband edge and the length of the pulse shaping filter for
the spectral mask in the IS95 standard, subject to the elimina-
tion of interchip interference in a distortionless channel. Mini-
mizing the stopband edge minimizes the frequency separation
required between an IS95 scheme and an adjacent occupant
of the spectrum. (The benefit is twofold if the adjacent occu-
pant is also operating an IS95 scheme with a minimal stopband
edge.) We choose and assume that the chip sequence is
white and that the smoothing and antialiasing filters and

Fig. 7. Ratio of minimal achievable stopband edgeF to the stopband
edge in IS95F for an orthogonal waveform generated from a filter of
lengthL, marked with�’s (calculated in Example 5). The circle denotes the
position of the (nonorthogonal) waveform generated from the filter in the IS95
standard.

have been chosen to be root cosine roll-off filters with
respect to , with roll-off factor . In that case,
with , (13) collapses to (9a). In Fig. 7,
we plot the variation of the ratio of the minimal stopband edge
to the stopband edge chosen in the IS95 standard against filter
length. Note that for , the stopband edge has been re-
duced by 9.16%. The power spectrum of the resulting waveform

is plotted in Fig. 8 along with
that generated by the IS95 filter with the same .

In Example 5, we found the most spectrally efficient wave-
form for a pulse shaping filter of a given length, where spectral
efficiency was measured by . Alternatively, we could fix the
spectral mask and measure spectral efficiency as the maximal
symbol rate such that the spectral mask is satisfied. (This
problem is different from that in Problem 5 because adjusting
changes both the passband and stopband edges of the spectral
mask on .) Although it is again true that for a fixed we
obtain a semidefinite feasibility problem, there may be disjoint
intervals of for which the new problem is feasible. Hence, a
simple bisection search may not find the globally minimal.
Fortunately, more sophisticated, but less efficient, searches can
be used instead. As an example, for the scenario in Example 5
and a filter length of , the chip rate of an IS95 scheme
can be increased by 9.11% while maintaining the spectral mask
and orthogonality.

V. ROBUSTNESS TOTIMING ERROR

In many communications applications, there may be signifi-
cant timing “jitter” on the sampler at the receiver. That is, with
reference to Fig. 2, the samples are taken at ,
where rather than . In-
deed, in some cases, timing jitter may be the dominant source
of ISI. In this section, we show that the design of a filter that is
maximally robust to timing error in a mean square error sense
can be formulated as an SDP.

To model and analyze the case where timing error is the dom-
inant source of ISI, we can consider the channel to be distortion-
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Fig. 8. Relative power spectra (in decibels) of two of the waveforms in
Example 5, with the spectral mask from the IS95 standard.

less. If varies slowly, then ,

where , and
. For that model

(15)

If the data is stationary and white with zero mean and variance
and the channel noise is stationary and white with zero

mean and variance and is not correlated with the data, then
for a given , the mean square error (MSE) in the data estimate
(normalized by ) is

(16)

where is the “signal-to-noise ratio.” Hence, the
average MSE is

(17)

where is the probability density function (pdf) for(at the
given SNR). (In deriving (17), we have implicitly assumed that
the timing error is independent of the data and the white noise.)
As shown in the Appendix, the average MSE can be rewritten as

(18)

where and the vector
. Here, the elements of and depend on

and , and those of depend on . By its
very nature, for all , and therefore, the expression
in (18) is a convex quadratic function of . Hence, is a
positive semidefinite matrix, and there is an rank matrix

such that .
A natural objective is to minimize the average MSE, but that

objective is a quadratic function and, hence, is not expressed as
an SDP. To cast the minimization of as a (convex) “sym-
metric cone” program (of which SDP’s are a special case), we
observe that for some , if and only if

(19)

Therefore a filter that generates a waveform that a) satisfies a
(general) relative spectral mask on and b) provides max-
imal robustness to timing error can be found as the solution of
the following “symmetric cone programme.”

Problem 6: Given
and , find a filter achieving

(20)

over variables and
subject to (9c), (14), (19) and

(21)

where is such that , and
and are given in (22)–(24) in the Appendix, respectively.

Here, we have normalized in (21) so that there is a
unit gain for the desired data symbol in the absence of timing
error. Problem 6 consists of a linear objective (20), subject to a
linear equality constraint (21), linear inequality constraints (14),
a linear matrix inequality (9c) and a rotated second-order cone
[44] constraint (19). Hence the optimal autocorrelation can be
efficiently found using tools for linear optimization over (cer-
tain) symmetric cones, such as [35]. An optimal filter
can be found using either of the one-stage or two-stage methods,
as discussed after Problem 3.

As one would expect, the optimal filter for Problem 6 is de-
pendent on the SNR. If the SNR varies, a filter which minimizes
the worst-case MSE over a range of SNR’s, or the expected
MSE over a distribution of SNR’s, can often be found by solving
Problem 6 for modified values of and . Furthermore, if we
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are able to design so that it is self-orthogonal and
so that it is mutually orthogonal to , then (21) reduces to

, (18) reduces to
and the optimal filter becomes independent of the SNR.

We point out there is no explicit orthogonality constraint in
Problem 6. Instead, we trade some ISI in the case of perfect
timing for improved robustness in the presence of timing error.
(We can also trade ISI for satisfaction of the spectral mask.)
However, in the absence of timing error, if is self-or-
thogonal and and are mutually orthogonal, then

, where
. In that case, (21) reduces to

and a global minimizer of subject to (21) has
for , which is precisely the orthogonality con-
straint in (9a). (Of course, the resulting might not satisfy
the spectral mask.)

Example 6: In this example, we design another filter to
compete with the filter specified for the synthesis of the chip
waveform in IS95 [28]. We choose the smoothing and an-
tialiasing filters from Example 5 and consider an additive white
Gaussian noise channel in which the receiver is subject to a
slowly varying timing error with a (symmetric) triangular pdf
on that is independent of the SNR. (This pdf is
a representative choice that generates severe timing jitter with
the likelihood of a given timing offset decreasing with its size.)
The filter of length that provides maximal robustness
to this timing error, subject to the spectral mask constraint on

from the IS95 standard, was found by solving Problem 6
(which is independent of the SNR in this case). The resulting
autocorrelation function for the waveform in (2) can be
written as and is
shown in Fig. 9. For comparison, Fig. 9 also contains
for the IS95 filter and the orthogonal filter from
Example 4. The improved robustness to timing error of the
newly designed filter is clear from the fact that is small
in the neighborhood of . That the IS95 filter
generates significant interchip interference even in the absence
of timing error is clear from the fact that for

.
To demonstrate the performance improvement of the newly

designed filter, we simulated the chip error rate for each filter
in a modified version of the scenario in Example 4 in which
the receiver is subject to slowly varying timing error with the
above pdf. The resulting chip error rate curves are plotted in
Fig. 10. Since the spectral mask constraints are quite “tight,” a
significant increase in the filter length was required in order to
obtain an appreciable improvement in CER over the orthogonal

filter from Example 4.

VI. CONCLUSION

We have shown that the design of orthogonal pulse shapes
for waveform coding can be formulated as a convex semidef-
inite program, and hence, globally optimal waveforms can be
found in an efficient manner. The formulation was motivated by
the observation that the deployment of baseband digital signal
processors removes many of the physical constraints in analog

Fig. 9. Autocorrelations of the waveformsp(t) for the filters in Example
6. Legend—Dashed: robust designed filter withL = 96; solid: orthogonal
designed filter withL = 51 from Example 4; dash-dot: IS95 filter.

Fig. 10. Simulated chip error rates (CER) against signal-to-noise ratio for the
filters in Example 6. Legend—Dashed: robust designed filter withL = 96;
solid: orthogonal designed filter withL = 51 from Example 4; dash-dot: IS95
filter; dotted: calculated CER for an orthogonal chip waveform in the absence
of timing error.
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waveform coding applications and by a desire to exploit the re-
sulting design freedom in an efficient manner. The formulation
is based on the fact that many of the desirable properties of a
coding waveform are actually properties of its autocorrelation.
In particular, orthogonality is a linear constraint on the auto-
correlation. We applied the Positive-Real Lemma to transform
the rather awkward semi-infinite linear inequality constraint that
appears in some current autocorrelation-based design methods
into a finite linear matrix inequality. An advantage of this trans-
formation is that the minimum-phase spectral factor and, hence,
an optimal waveform, can be obtained directly from the output
of the optimization routine.

Although there are many waveform designs that can be for-
mulated in this way, we focussed on three of them, namely

a) the minimal bandwidth for a given filter length;
b) the minimal filter length for a given bandwidth;
c) the maximal robustness to timing error.

Bandwidth was measured either in spectral energy concentra-
tion terms or with respect to a spectral mask. We demonstrated
the effectiveness of our design technique by designing “chip
waveforms” with superior performance to that of the chip wave-
forms specified in recent standards for CDMA-based mobile
telecommunication systems. The efficiency of the design tech-
nique was demonstrated by the small computation times in the
examples (compared with the times that would be required for
reliable solution of the nonconvex formulations). We are cur-
rently exploring some reformulations of our design problems
into forms that more closely match the internal structure of al-
gorithms for the solution of the semidefinite programs. Initial
experiments indicate that the computation times can be further
reduced by factors of several tens for the problems considered
in this paper.

Since the intersection of two convex sets is itself convex,
many combinations of the problems considered in this paper can
be solved using similar techniques. Furthermore, there are other
pulse-shape characteristics that can also be incorporated into the
semidefinite program. For instance, some recent work has indi-
cated that robustness to frequency-selective fading can be mea-
sured in terms of a convex quadratic function of the autocorre-
lation [45]. The techniques of this paper can be easily extended
to provide direct design of complex-valued pulse shaping filters
(as distinct from separate design of the real and imaginary parts)
now that generic SDP solvers that accommodate complex data
are being introduced. The techniques may also be applicable
to the design of some precoding schemes and in the design of
multiplexing schemes in which the pulse-shaping filter for each
user is obtained from a single prototype filter, e.g., OFDM. In
addition, applications may appear in signal processing fields,
such as the design of certain structured multirate filter banks and
wavelet design, especially when phase linearity is not required.
However, there are a few waveform characteristics that are im-
portant in some communications applications but are functions
of the waveform itself, rather than its autocorrelation. For ex-
ample, the strength of the cyclic autocorrelation coefficients of

and the magnitude of the envelope variation of . An
interesting direction for future work is to examine ways in which
such characteristics can be incorporated into the current design
framework.

APPENDIX

DERIVATION OF (18)

Expanding (16), we have that

where . Here, the ma-

trix , with
and for , and the

vectors and . Since
, we have that

where , and and are
the identity and exchange matrices, respectively, of dimension

. Substituting the above expressions into (17),
we obtain (18), in which

(22)

(23)

(24)

where the integrals are taken elementwise. Since
is positive semidefinite, is also positive semidefinite, and
hence, for some matrix .
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