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I.  INTRODUCTION 
Cognitive Radio (CR) [1] is an intelligent wireless 

communication system that is cognizant (hence the name) 
of its environment, learns from it and adapts its 
transmission features according to statistical variations in 
the environment to maximize utilization of premium 
resources such as spectrum while ensuring good QoS. 
Two main entities are introduced, namely primary and 
secondary users. Primary users are the owners of the 
licensed spectrum while the secondary (unlicensed) users 
transmit and receive signals over the licensed spectra or 
portions of it when the primary users are inactive. The 
secondary users should have the ability to gauge the radio 
environment and intelligently exploit the unused licensed 
spectrum and relinquish it when primary users are active.  

Key to the successful operation of CR systems is to 
gauge the wireless environments over wide frequency 
bands and identify spectrum holes and occupied bands. 
The challenge is in the identification and detection of 
primary user signals amidst harsh and noisy environs. In 
this context, speed and accuracy of measurement are the 
main metrics to determine the suitable spectrum sensing 
technique for CR. Speed and accuracy are important to 
answer the questions of which band is occupied and what 
instance. Accuracy of the estimation depends on 
frequency resolution, bias or leakage and variance of the 
estimated power. Greater the frequency resolution, more 
accurate the estimated power at each frequency. The bias 
or leakage is related to the side lobe level. A high side 
lobe level will reduce the accuracy of power estimated 
causing a spillover into neighboring frequencies. 
Meanwhile, variance of the estimate relates to the 
variations in the power estimated in a certain frequency 
band. There are other important metrics too. One is the 
right trade off between the time and frequency resolution 

achievable. Due to uncertainty principle, it is not possible 
to have the best frequency and time resolution at the same 
time. Complexity of the mechanism is another issue. 
Since CRs are envisioned to operate on wireless nodes 
with small size and power, the spectrum sensing 
implementation should be kept as simple as possible.  

In this paper, spectrum sensing as a crucial aspect in CR 
system is discussed. Various physical layer techniques 
available in the literature are catalogued and evaluated. 
The organization of the article is as follows. In Section II, 
a review of traditional spectrum sensing technique is 
provided.  This includes periodogram estimate and its 
variants as an example for non parametric estimation. 
Section III describes spectrum estimation technique 
proposed for CR. The techniques are based on estimation 
through detection of pilots, features or energy. The 
highlight of this section is the introduction of the Filter 
Bank Spectrum Estimation proposed by F. Boroujeny [2], 
[3]. Section IV explores the possibility of applying 
wavelet theory for spectrum sensing. The article rounds 
up with a summary in Section V. 

II.  GENERAL REVIEW ON SPECTRUM ESTIMATION 
In general, spectrum estimation can be categorized 

into direct and indirect methods. In classical direct 
method (usually recognized as frequency domain 
approach), the power spectrum is estimated directly from 
signal being estimated. On the other hand, in indirect 
method, also known as time domain approach, the 
autocorrelation function of the signal being estimated is 
calculated. From this autocorrelation value, the power 
spectrum density can be found by applying the Discrete 
Fourier Transform.  

Another way to categorize spectrum estimation 
method is by classifying it into parametric or non-
parametric methods. Parametric method is basically 
model based approach [4]. In this method, a signal is 
modeled by Auto Regressive (AR), Moving Average 
(MA) or Auto Regressive Moving Average (ARMA) 
process. Once the signal is modeled, all parameters of the 
underlying model can be estimated from the observed 
signal. Estimator based on parametric method generally 
has capability to distinguish higher degree of detail. The 
disadvantage of parametric method is that if the signal is 
not sufficiently and accurately described by the model, 
the result is less meaningful. Non Parametric methods, on 
the other hand, do not have any assumption about the 
shape of the power spectrum and try to find acceptable 
estimate of the power spectrum without prior knowledge 
about the underlying stochastic approach.  

The most commonly known spectrum sensing 
technique is periodogram which is classified as a non 
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random signal being estimated, followed by taking the 
square of it and then dividing the result with the number 
of samples N. The main issue in periodogram is the use of 
rectangular windowing of waveform to obtain finite 
length samples. This windowing introduces a 
discontinuity (illustrated in Figure 1) between the original 
signal and the aliased version produced by a DFT 
transformation. In the frequency domain, the rectangular 
window has resulted in a Dirichlet Kernel described by 
the width of the main lobe and the size of side lobe [4], 
[5]. The width of the main lobe is related to the frequency 
resolution of the power spectra, and the size of side lobe 
is related to the ratio between maximum and minimum 
spectral power that is distinguishable by the estimator. 
The rectangular window compromises the frequency 
resolution, producing leakage and a biased estimate.  

Various optimizations can be brought about to 
improve the periodogram. For example, the power 
variance in the periodogram estimate can be reduced by 
averaging (Bartlett Method). The samples are divided 
into several segments and the periodograms of each 
segment is averaged [6]. The important thing is to 
identify a trade off between number of samples per 
segments and number of segments. In theory, the number 
of segments should be maximized in order to minimize 
the variance of estimated power. However, this also 
means lowering the number of samples in each sub-
sequence resulting in larger bias and smaller frequency 
resolution.   

        
Figure 1.  The effect of  applying DFT on the truncated signal yo(k) 

 
In [7] Welch modified the Bartlett method by letting 

the segments overlap and introduced arbitrary windows 
on data segments before the calculation of periodogram. 
The use of windows gave a new lever to tune the 
resolution and the variance of the power spectra 

Another well known approach is Correlogram, in 
which the autocorrelation function (Ryy(k)) of the signal 
being estimated  is calculated. Power spectral density 
(PSD) is obtained from the Fourier transform of Ryy(k). 
To calculate PSD, the true autocorrelation value is 
required but only approximation is possible. Another 
problem is the assumption that the autocorrelation value 
is of infinite length. This is addressed by applying a 
rectangular window over approximation of 
autocorrelation value. A variant of correlogram, the 
Blackman-Tukey method [4], computes the approximated 

autocorrelation value of the signal being estimated 

and later applies a suitable window function w(k). The 
Fourier Transform of the result is then computed to 
obtain the PSD. Blackman-Tukey method can be viewed 
as smoothing the periodogram by convolving it with the 
kernel of selected window to reduce the variance of the 
power estimate. 

^
( )yyR k

III.  SPECTRUM SENSING IN COGNITIVE RADIO 

In CR, the secondary users need to scan a large swath 
of licensed frequency to locate the unoccupied spectrum 
as quickly and accurately as possible [1]. This can be 
done by the use of STFT or Gabor Transform: 
   [ ] 2{ ( )} ( , ) ( ) ( )  j ft

t

STFT x t X f x t w t e dtπτ τ −≡ = −∫   (1) 

(1) shows that STFT, which gives the information about 
time and frequency, is actually the basis for periodogram 
estimate. A trade off between speed and accuracy can be 
achieved in STFT by altering the dimensions of the 
window function. Smaller windows mean quicker 
spectrum estimation but larger main lobe of the window 
kernel (and hence poorer frequency resolution). If the size 
of the window is extended, more time is consumed to 
collect the samples and the speed of the spectrum sensing 
is compromised. It should be noted that STFT suggests 
the use of same window for each collection samples, so 
the frequency resolution for the whole frequency range is 
uniform. The following sub sections discuss possible 
spectrum estimation techniques for CR. 
 

A.  Pilot Detection via Match Filter Technique 
Cabric et al in [8] use matched filter for pilot 

detection. This method assumes that the primary user 
sends pilot signal with data. The pilot signal should be 
known by secondary users too allowing them to perform 
timing and carrier synchronization to achieve coherence 
[9]. Secondary users should have full prior knowledge of 
modulation type, pulse shaping and packet format. In this 
scenario, secondary users should provide separate 
dedicated receiver for each primary user class, which is 
impractical. Other drawbacks of this approach are 
susceptibility to frequency offsets and the resultant loss 
of synchronization [9]. On the positive side, pilot 
detection requires minimum sensing time sensing because 
it exploits available knowledge. Figure 2 illustrates Pilot 
Detection via matched filtering. 
    

B. Energy Detection 
Another approach is Energy Detection, a non-

coherent detection, where prior knowledge of pilot data is 
not required. Figure 3 illustrates the implementation. The 
first implementation of Energy Detection (figure 3a) 
consists of a low pass filter to remove out of band noise 
and adjacent interference, an analog to digital converter 
as well as square law device to compute the energy. This 
implementation is not flexible for narrowband signals and 
sine waves [9]. Therefore, [9] proposes periodogram 
solution (figure 3b) through square magnitude of FFT. 
The result is then averaged. Some disadvantages of non-

parametric estimate [4]. The procedure starts by 
calculating the Discrete Fourier Transform (DFT) of the 
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coherent detection are the susceptibility of the detection 
threshold to noise, in-band interference and fading [8].  

 

 
Figure 2: Pilot detection through match filtering [9] 
    

 
Figure 3. Implementation of energy detection (a) with analog pre-filter 
and square-law device (b) with periodogram: FFT magnitude squared 
and averaged [9]. 

 

C. Cyclostationary Feature Detection 
This method takes advantage of the cyclostationarity 

of the modulated signal [8]. Generally, the transmitted 
data is taken to be a stationary random process. However, 
when it is modulated with sinusoid carriers, cyclic 
prefixes (as in OFDM) and code or hoping sequences (as 
in CDMA), a cyclostationarity is induced i.e. the mean, 
autocorrelation and statistics show periodic behavior. 
This feature is exploited in a detector (depicted in figure 
4) that measures a signal property called Spectral 
Correlation Function (SCF). When parameter α in figure 
4 (called cycle frequency) is 0, the SCF yields the PSD. 
  

  
Figure 4. Cyclostationarity feature detector [8] 
 

D. Multi Taper Spectrum Estimation 
The periodogram estimate may be viewed as the 

output of several filters banks with each point in the 
power spectrum estimate corresponding to a filter’s 
output. The filter bank is constructed by modulating a 
single prototype filter. The Multi Taper Spectrum 
Estimator (MTSE), proposed by Thomson [10], works 
somewhat similar but it uses multiple orthogonal 
prototype filters to improve the variance of estimated 
power and reduce the leakage. The process is initiated by 
collecting the last M received samples in a vector x(n) = 
[x(n) x(n-1) ….. x(n-M+1)]T and representing it as a set of 
orthogonal slepian base vectors [2], [10]: 

                       x(n)
1

0

( )
K

k i
k

fκ
−

=

≈ ∑ D qk                 (2) 

In (2), ( )k ifκ is the expansion coefficients, K is the 
number of frequency points fi that have to be estimated, 
qk is the set of orthogonal slepian basis vectors and D is a 

diagonal matrix with the diagonal elements of 1, e(j2πfi), 
…., e(j2π(M-1)fi). ( )k ifκ is given as: 
                     ( )k ifκ = (D qk)H x(n)                          (3) 
Based on (3), the MTSE is formulated as:  

                 
21^

0

1( ) ( )
K

MTSE i k
k

S f f
K

κ
−

=

= ∑ i                  (4) 

Indeed if there is only a vector q0 containing 1’s as its 
elements, (4) becomes periodogram with rectangular 
window. If we manipulate the elements in q0, (4) 
becomes the windowed periodogram with window type 
determined by q0. Hence, (4) can generally be interpreted 
as average of several periodograms with different 
windows. The averaging process in (4) is conducted on 
the data set in its entirety and in this sense MTSE is 
different from the Welch approach [7] where the data 
samples are segmented and averaged. Equation (3) can be 
regarded as Fourier Transform of convolution between 
the received samples x(n) and a filter having qk as its 
impulse response. Therefore, ( )k ifκ can be viewed as 
the output of kth bandpass filter of a group of bandpass 
filter banks with different filter response.  

Since every point fi in the power spectrum estimate is 
related to outputs of a group of bandpass filters in the 
same band, the filter’s pass band Δf gives its frequency 
resolution. Hence, (4) is the estimate of the power over 
the frequency band (fi-Δf/2, fi+Δf/2). For a given 
resolution Δf, the prototype low pass filters should have 
pass band between (-Δf/2, +Δf/2) and minimum energy at 
stop band to minimize leakage. The variance of the 
estimate is reduced by taking advantage of the presence 
of multiple prototype (prolate) filters having impulse 
responses derived from the vectors qk. For given 
frequency band, the output of each band pass filter 
corresponding to different prototype filter is collected and 
averaged. The output of each band pass filter should be 
independent from each other to effectively reduce the 
variance of estimated power. This is achieved from the 
orthogonality of the Slepian sequences. Minimax theorem 
is used to derive the Slepian sequences [2]. Firstly, the 
autocorrelation matrix R of the observation vector x(n) is 
computed. The set of eigenvalues λ0 > λ1 > … > λM-1 of 
correlation matrix R and the corresponding eigenvectors 
q0, q1, …. qM-1, are obtained through the following 
optimizations [2]: 

                 ⎥⎦
⎤

⎢⎣
⎡==

=

2
0

1
0max )(max

0

nxqE T

q
λλ                 (5) 

       ⎥⎦
⎤
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⎡=

=

2

1
)(max nxqE T

i
q

i
i

λ  for i = 1, 2, 3, …, M-1 

                  subject to qi
Tqk =0, for 0 ≤ k < i                (6) 

||qi|| in (5) and (6) is the Euclidean norm of vector qi. The 
last step is basically to choose the K eigenvectors out of 
M eigenvectors of the correlation matrix R. These K 
eigenvectors corresponds to the largest K eigenvalues. 

While K prototype filters having minimum energy in 
stop band are expected, not all of the prototype filters 
fulfill the expectation. The filter having q0 as its impulse 
response tends to have minimum energy in stop band [2]. 
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However, the filter having q1 as its impulse response does 
not have a stop band attenuation as good as that of q0. 
The reason for this can be explained as follows. A filter 
with impulse response q0 has the best stop band 
attenuation since it is chosen to maximize the 
corresponding eigenvalue (as expressed in equation (5)) 
without any constraint. On the other hand, a filter with 
impulse response q1 is chosen to maximize the 
corresponding eigenvalue in (5) but with additional 
constraint q1

Tq0 = 0 mentioned in (6). The performance of 
the next derived filter has more deterioration. With regard 
to the need for having minimum leakage, a careful 
treatment is needed when the outputs of each filter 
corresponding to different prototype filters are averaged. 
Obviously, they should not have the same weight. The 
output of filter having better stop band attenuation should 
be given more weight. Thomson offers an iterative 
algorithm to compute the estimate of power spectrum 
[10]. 

E. Filter Bank Spectrum Sensing 
Farhang-Boroujeny in [2] proposed filter bank 

spectrum estimation (FBSE) for CR by using a pair of 
matched root Nyquist-filter. The proposal is based on the 
assumption that multicarrier modulation is used as the 
underlying communication technique [2] [3]. In [2], every 
point in power or frequency spectrum is considered as the 
output of single filter (or multiple filters operating at the 
same band). Hence, the frequency spectrum is considered 
as the output of multiple filters (operating at different 
bands). In MTSE, every point in the spectrum is obtained 
by averaging the output of different prototype filters at 
the same frequency band. In the FBSE method, MTSE is 
simplified by introducing only one prototype filter for 
each band. The idea is to assume that the filters at the 
receiver and transmitter side are a pair of matched root-
Nyquist filters H(z) in Fig. 5 [11]. The received signal is 
demodulated by ith subcarrier and then forwarded to the 
root-Nyquist filter as illustrated in fig. 5. 

 

                   
 
Figure 5. The demodulation of received signal with respect to ith 
subcarrier before it is processed through root-Nyquist filter [2]. 

 
Considering Figure 5, it can be shown that: 
                  

22( ) ( ) ( )
i i

j f
y y xx iS f S f f H e π= +                 (7) 

where is power spectrum density of yi(n). 

Assuming that H(z) is narrowband, 

( )
i iy yS f

( )xxS f f+ i can be 
approximated as ( )xx iS f . Based on this approximation, 
we can try to write (7) in z domain as: 

1( ) ( ) ( ) ( )
i iy y xx iz S f H z H z−Φ =                 (8) 

( )xx iS f in (8) is constant. It can be noted that the 
correlation coefficients of yi(n), ( )

i iy y kφ , can be obtained 

from the inverse Z-transform . According to [2], 
H(z) is designed as root-Nyquist (N) filters (N gives 
number of zero-crossings of the filter in an of interval of 
N samples). Consequently, G(z) = H(z)H(z-1) is Nyquist 
(N) filter. It is required that G(z) satisfies [2]: 

( )
i iy y zΦ

                            (9) 
1, 0

( )
0,

if n
g n

if n mN

⎧ =⎪= ⎨
⎪ =⎩

As a result, the correlation )(k
iiyyφ bears a resemblance 

to Nyquist (N) sequence gN(n), where the subscript N 
indicates the number of zero-crossing of the 
autocorrelation function. For an observation vector yi(n) = 
[yi(n), yi(n-L), …., yi(n-(K-1)L)] of size L the correlation 
matrix is given as [2]: 

( )xx iS f=
i iy yR A                 (10) 

with A given as: 

A = 

gN(0)       gN(L)           ……. gN((K-1)L)
gN(-L)       gN(0)            ...…. gN((K-2)L)

gN(-(K-1)L)  gN(-(K-2)L) ……. gN(0)    

...
...

...
...

     (11) 
An eigenvalue decomposition is then performed on 
matrix A. These resultant eigenvalues are used to 
measure the degree of freedom which can later be used to 
adjust the variance of the estimates.  

A comparative analysis of MTSE and FBSE can be 
summarized as follows. Firstly, the magnitude response 
of the root-Nyquist filter proposed by [2] is comparable 
to the magnitude response of the best prototype filters 
used in MTSE. Recall that MTSE uses multiple prototype 
filters for a given frequency band and only the one 
derived with respect to largest eigenvalue of the 
autocorrelation matrix of the observation vectors gives 
the best response. As a result, FBSE outperforms MTSE 
(in terms of variance) over frequency band with low 
power spectrum density. Due to the better magnitude 
response of its prototype filter, FBSE introduces lower 
leakages compared to MTSE. Secondly, FBSE is usually 
better when the number of samples is large while MTSE 
is superior for estimations with a small sample space. 
With respect to speed issue, MTSE is faster due to 
smaller window size for a given certain sampling rate. 
However, the use of iterative process in MTSE increases 
the complexity making it non-viable for CR. 

IV.  WAVELET BASED EDGE DETECTION 

Wavelets and wavelet transform are latest additions to 
the rich arsenal of communication system tool box [12], 
[13]. They possess excellent time-frequency localization 
properties that can serve as powerful mathematical tools 
to analyze local spectral structure to identify singularities 
and edges.  

In [14] Z. Tian and G.B. Giannakis propose a wavelet 
based wideband spectrum sensing approach for dynamic 
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spectrum management. In their approach, the signal 
spectrum over a wide frequency band is decomposed into 
elementary building blocks of non-overlapping sub-bands 
that are well characterized by local irregularities in 
frequency. Then the entire wideband is modeled as a 
sequence of consecutive frequency sub-bands, where the 
power spectral characteristic is smooth within each sub-
band but exhibit a discontinuous change between adjacent 
sub-bands. Information on the locations and intensities of 
spectrum holes and occupied bands is derived by 
considering the irregularities in PSD. The main attraction 
for wavelets in this application is in their ability to 
analyze singularities and irregular structures which can be 
used to characterize the local regularity and edges of 
signals. Hence, the method is also called Edge detection.  

Assuming a wide band of interest in the frequency 
range [f0, fN] with bandwidth B = fN-f0, with N spectrum 
bands. The task is to find the occupied and unoccupied 
bands as well as the frequency boundaries of each band. 
Hence, we must find f0 < f 1 < f 2 < …… f N-1 < fN in which 
the nth band is defined as Bn : {f ∈ Bn : fn-1 ≤ f < fN}, n = 1, 
2, ....,N [14]. The last task would be the spectral density 
estimation for each band. Tian & Giannakis [14] assume 
that the power spectrum density (PSD) within each band 
is smooth and flat but exhibit discontinuities and 
irregularities with the adjacent bands. From the received 
signals in the wide band of interest [f0, fN], the wavelet is 
used to locate the boundaries of each band indicated by 
the discontinuities. A dilated (by a factor s) version of the 
wavelet function )( fφ can be given as [14]:  

                         1( ) ( )s
ff

s s
φ φ=                 (12) 

Then the Continuous Wavelet Transform (CWT) of the 
PSD can be defined as [12]: 
                  )()}({ fSfSCWT srr φ∗=                (13) 
Since  is the Fourier Transform of the 
autocorrelation function Rr(τ) and by defining 

)( fSr

{ } )()()( τφτ sfIFT ss Φ==Φ , where IFT{} denotes 
Inverse Fourier Transform, (13) is represented as [14]:  
            )}()({)}({ ττ sRFTfSCWT rr Φ=                (14) 
FT{} in (9) denotes Fourier Transform. The CWT of PSD 
in (14) is used to locate the irregularities and 
discontinuities in the wide band of interest especially by 
investigating the shape of the first and second derivative 
of (14), described, respectively, as follows [14]: 

)}()({)}({' τττ τ sRsFTfSCWT sr Φ−=         (15) 

                 (16) )}()({)}({'' 22 τττ τ sRFTsfSCWT sr Φ==
In (15) and (16), and  
describe the first and second order derivatives of Sr(f) 
smoothed by the wavelet 

)}({' fSCWT r )}({'' fSCWT r

)( fsφ . 
The local maxima of first derivative  

can be used to indicate the irregularities of the PSD [14]. 
Therefore, with regard to the assumption that the PSD is 
smooth within each band, the boundaries of each band are 
located by the location of the local maxima of the first 
derivative . The same goal can also be 

achieved by tracking the location of zero crossing of the 
second derivative . Both procedures give 
location of f0, f 1, …… f N-1, fN.  

)}({' fSCWT r

)}({' fSCWT r

''{ ( )}rCWT S f

The problem with this approach is the possibility of 
noise induced local maxima in the shape of first order 
derivative . This can be solved by varying 
the scale variable s. The actual boundaries of each band 
are described by the local maxima that always presents in 

 for any scales. Tian & Giannakis research 
has shown that the wavelet approach has successfully 
identified the number of bands that is occupied within 
wide band of interest [14]. This method also offers a good 
dynamic spectrum range. However, issues of the speed of 
the method remain unexplored.  

)}({' fSCWT r

)}({' fSCWT r

Another wavelet approach for spectrum sensing is 
offered by Hur, et al in [15], which basically combines 
coarse and fine sensing resulting in Multi Resolution 
Spectrum Sensing. The received signal is correlated with 
the modulated wavelet to obtain the spectral contents of 
the input signal at the band around the carrier frequency 
modulated by the wavelet. The resolution is adjusted by 
either using wavelet with large or small resolution 
bandwidth. The coarse sensing is used to examine a 
wideband spectrum in fast manner and to produce 
information about candidate unoccupied spectrum 
segments. Fine sensing is used to further investigate the 
candidate spectrum segments [15]. In addition to the 
wavelet based techniques introduced above, there is a 
great scope for utilizing wavelet theory for spectrum 
sensing. Wavelet has the requisite properties to 
dynamically tune the time and frequency resolution by 
playing with dilated versions of the wavelet and scaling 
functions. Best time resolution is preferred to locate 
discontinuities in time-domain signal. On the other hand, 
time resolution can be compromised and traded-off with 
high frequency resolution for segments of signal that tend 
to remain stationary for long time durations (slow 
varying) [13]. 

V.  CONCLUSIONS  

In this paper, spectrum sensing as a crucial aspect in 
CR system was discussed. Various physical layer 
techniques available in the literature were catalogued and 
evaluated. With regard to selecting the right spectrum 
sensing technique for CR, speed and accuracy of 
estimation are the two main metrics. Due to the 
uncertainty principle, it is not possible to simultaneously 
have the best frequency and time resolutions. This also 
means that there is a trade off between the speed (time 
resolution) and accuracy (frequency resolution) of 
estimation achievable. A good time resolution is 
necessary to locate discontinuities in time-domain signal. 
However, the time resolution can be compromised for 
segments of the signal which are stationary for long 
periods of time or slow varying and traded off to get a 
high frequency resolution. Traditional techniques such as 
periodogram or STFT based estimators cannot be tuned 
to vary the time-frequency resolutions according to the 
demands of the radio environment. Furthermore, these 
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estimators suffer from drawbacks such as leakage and 
large variance in power spectrum estimates. Other 
techniques such as MTSE and FBSE successfully 
overcome these infarctions but they too lack the keys to 
adjust and optimally tailor the time-frequency resolution 
window.  

It is here that the theory of wavelets stands out for 
spectrum estimation applications. Wavelet has properties 
required to dynamically tune the time and frequency 
resolution by playing with dilated versions of the wavelet 
and scaling functions. This facility of the wavelets has 
been demonstrated by Tian and Giannakis in [14] by 
convolving the wavelet with the power spectrum density 
of the received signal (or smoothing the power spectrum 
density with the wavelet). By taking advantage of the first 
and second order derivative of this convolution, the 
location of the frequency boundaries of each band within 
the wide band of interest is found.  

To conclude, the best spectrum sensing approach for 
Cognitive Radio would be the ones which offer a trade 
off between time-frequency resolutions with minimum 
complexity. Existing state-of-art technologies 
unfortunately do not offer this possibility. Future research 
should focus on finding means to identify the optimal 
spectrum sensing technique with flexible tuning 
capability in terms of time and frequency resolution. On 
these accounts, it appears that the wavelet based spectrum 
estimation may hold the answers. 
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